
The MML Programmer’s Guide

Third Edition

Gordano Ltd

The MML Programmer’s Guide

Copyright © Gordano Ltd, 1995-2015. All rights reserved. Printed in the United
Kingdom.

Published by Gordano Ltd,
Unit 1, Yeo Bank Business Park, Kenn Road, Clevedon, North Somerset, BS21 6UW.

Printing History:

Oct 2002 First Edition

May 2003 Second Edition

April 2015 Third Edition

ISBN

GMS, Gordano and Gordano Ltd and their logos are trademarks of Gordano Ltd.

Many of the designations used by manufacturers and sellers to distribute their products
are claimed as trademarks. Where those designations appear in this book, and Gordano
Ltd was aware of a trademark claim, the designations have been printed in capitals or
initial capitals

Written by Brian Dorricott, John Stanners, Dean Fenton, Jason Hall and Dean Packer.

Copyright © Gordano Ltd, 1995-2015

GMS

WARNING: YOU SHOULD CAREFULLY READ THE LICENCE AGREEMENT PROVIDED WITH THIS MANUAL
BEFORE USING THIS SOFTWARE PACKAGE. INSTALLING THE SOFTWARE ONTO YOUR COMPUTER
INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU DO NOT WISH TO ACCEPT
ALL OF THESE TERMS, YOU SHOULD STOP INSTALLING THIS SOFTWARE NOW AND DESTROY ALL COPIES
OF THE SOFTWARE AND ALL MANUALS AND OTHER DOCUMENTS SUPPLIED WITH IT.

NTMail is a registered trademark of Gordano Ltd.

The Gordano Logo is a registered trademark of Gordano Ltd.

Juce is a registered trademark of Gordano Ltd.

NT is a registered trademark of Northern Telecom Ltd.

Windows NT is a trademark of Microsoft Corporation in the USA and other countries.

All other trademarks are acknowledged.

Patents

Gordano owns a number of patents on its software as listed below:

Autoport
Gordano's “Autoport” technology is patented in the United Kingdom under patent
number GB2391649.
A patent application has been filed in the United States and is pending approval.

Maintaining software and data (Automatic Updates)
Gordano's “Maintaining software and data” technology is patented in the United
Kingdom under patent number GB2374163.
A patent application has been filed in the United States and is pending approval.

Anti-spam filter (Sender Verification)
Gordano's “Anti-spam Filter” technology is patented in the United Kingdom under
patent number GB2385965 and in the United States under patent number 7574476.

Transitory E-mail Addresses
Gordano's “Transitory E-mail Address” technology is patented in the United Kingdom
under patent number GB2398399.

MML Programmer’s Guide Contents

Copyright ©
Table of Contents

1 Introduction . 1
1.1 Who Should Read this Guide? . 1
1.2 Other Gordano Guides . 1
1.3 Conventions . 3

2 Introducing Mail Meta Language . 5
2.1 Language Structure . 6

Mixing HTML and code . 6
Pages . 6
 Comments. 7
Escape sequences . 7

2.2 Types of Script . 7
GUI scripts . 7
GMS Anti-Spam scripts . 7
Timed events . 9
List messages containing executable MML 9

2.3 Program Limits . 11
2.4 Directories and Files . 11
2.5 The # Operator. 11
2.6 Expression Evaluation . 12
2.7 Notes on the Script Server . 12
2.8 Account Names . 12
2.9 Variables . 14

Variable manipulation . 14
Variable search order. 15
Variable types . 15
Object variables . 16
Persistent variable storage . 17

2.10 Processing Image Maps . 17
2.11 Session Setup . 19
2.12 Tips for C and VisualBasic Programmers 19

3 Commands . 21
3.1 Def. 21
3.2 Do . 22
3.3 End . 22
3.4 For . 22
3.5 If..Else . 23
3.6 Include . 24
3.7 Return . 24
3.8 Session (also called Global) . 24
3.9 While . 25
3.10 Connect . 25
3.11 Destroy. 25

4 Function Groups . 27
4.1 Messages . 28
 Gordano Ltd, 1995-2015 i

Contents MML Programmer’s Guide
4.2 User Functions .29
4.3 Membership Database Functions30
4.4 File and Directory Functions .31
4.5 Folder (Mailbox) Functions .32
4.6 Connection Functions .33
4.7 String Functions. .34
4.8 List String Functions. .35
4.9 Bit and Bit Mask Functions. .36
4.10 Times, Date and Event Functions37

5 Functions .39
 Introduction .39

Return values .39
Files and absolute paths .40
Directories .40

 AddAlias .41
 AddDomain .42
 AddHTTPResponseHeader .44
 AddPostfix .45
 AddrInRange .46
 AddSession .47
 AddTimed .48
 AddUser. .50
 AddZip .52
 AllowAbsolutefileNames. .53
 ArchiveAddMessage. .54
 ArchiveRecalculate .55
 ArchiveRefresh .56
 Asc. .57
 AutoConnect .58
 AutoDisconnect .60
 BitAnd .61
 BitIsSet .62
 BitMaskIsSet. .63
 BitReset .64
 BitSet .65
 Bound .66
 CheckPassword .67
 CheckServer .68
 CheckServiceAccess .69
 CheckTopLevelScript .70
 Chr .71
 CloseMemberDB .72
 CloseZip .73
 CollectFromPOP .74
 ConfiguredLanguages .77
 ConvertCase .78
 ConvertForDisplay .79
 ConvertToAccount .80
 ConvertToDomain .82
ii Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Contents

Copyright ©
 ConvertToEmailAddress . 83
 ConvertToFlatHTML . 84
 ConvertToHTML . 85
 ConvertToJava . 86
 ConvertToRealName . 87
 ConvertToUser . 88
 ConvertToTime . 89
 CreateDirectory. 90
 CreateSetup . 91
 Date . 92
 DateTimeFormat . 93
 DefaultLanguage. 94
 DefaultListParm. 95
 DelAlias. 96
 DelDir . 97
 DelDomain . 98
 DelDomainFiles . 99
 DeleteMemberRecord . 100
 DelFile. 101
 DelSession. 102
 DelTimed . 103
 DelUser . 104
 DelUserFiles. 105
 DiffDate . 106
 DirSize . 107
 EncryptPassword . 108
 EnumRasEntries. 109
 ExistDomain . 110
 ExistFile . 111
 ExistUser . 112
 ExistVar. 113
 FileClose . 114
 FileCopy . 115
 FileEOF . 116
 FileIsBinary . 117
 Filemd5. 118
 FileOpen . 119
 FileReadLine . 120
 FileReplace . 121
 FileSize . 122
 FileVscan. 123
 FileWriteLine . 124
 FilterDomainsOfType . 125
 FilterMsg. 126
 FilterUsersOfType . 127
 FindFiles . 128
 FolderAppendMsg. 129
 FolderClose . 130
 FolderDelete . 131
 FolderExist. 132
 Gordano Ltd, 1995-2015 iii

Contents MML Programmer’s Guide
 FolderFlush. .133
 FolderGetMessageCount .134
 FolderGetNewMessageCount .135
 FolderList .136
 FolderModified. .137
 FolderMsgCheckStatus .138
 FolderMsgSetStatus .139
 FolderMsgUnsetStatus .140
 FolderOpen .141
 FolderRename .142
 GetAllMembers .143
 GetConnectionDomain. .146
 GetConnectionVariables. .147
 GetHostedIps .148
 GetHostname. .149
 GetHTTPCookie .150
 GetHTTPPage .151
 GetIPAddress .152
 GetLoadsharingServer .153
 GetLoadsharingServerList .154
 GetLocalDomain. .155
 GetLocalIps .156
 GetLocalAddr .157
 GetLogonUser .158
 GetMailboxName .159
 GetMaxThreads .160
 GetMemberRecord. .161
 GetMXRecord .163
 GetOs .164
 GetOsStr .165
 GetPostFixes. .166
 GetProcessorStr .167
 GetProtocolText .168
 GetProtocolType. .169
 GetProxyCacheSize. .170
 GetRand. .171
 GetRealLogonUser .172
 GetRemoteConnectionAddr .173
 GetSessionID .174
 GetSessionVariables .175
 GetStatus .176
 GetSupportInfo .177
 GetUID. .178
 GetUsersOfType .179
 IMIsAvailable .181
 ImportFolder .182
 ImportMembers .183
 IMSendMessage .184
 IncrementDate .185
 InStr .186
iv Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Contents

Copyright ©
 Interpret . 187
 IsAbsoluteFilename . 188
 IsConnected . 189
 IsDate . 190
 IsDialupEnabled. 191
 IsDomain. 192
 IsInteger . 193
 IsIPAddress . 194
 IsLoggedOn. 195
 IsMemberOfList. 196
 IsValidDate . 197
 IsValidEmailAddress. 198
 IsValidPassword. 199
 IsValidStr. 200
 IsValidUserName . 201
 IsWildcard . 202
 KillScript . 203
 LanguageName. 204
 Left . 205
 Len . 206
 ListRunningScripts . 207
 ListVersion . 208
 Location . 209
 Log . 210
 LoggedOnUsers. 211
 LSAppend . 212
 LSAppend2 . 213
 LSDelete . 214
 LSDeleteElement . 215
 LSElement . 216
 LSFind . 217
 LSFirstMatch . 218
 LSLength. 219
 LSMatch . 220
 LSOrder. 221
 LSPopElement . 222
 LSPushElement . 223
 LSReplace . 224
 LSSubset . 225
 Match . 226
 Md5Str . 227
 MemberFormat . 228
 Mid. 230
 MsgAddAttachment . 231
 MsgAddBody . 232
 MsgAddFile. 233
 MsgAddHeader. 234
 MsgAddRecipient . 235
 MsgClose . 236
 MsgCompose . 238
 Gordano Ltd, 1995-2015 v

Contents MML Programmer’s Guide
 MsgCopy .239
 MsgCreate .240
 MsgEndOfLines .242
 MsgReadFirstLine .243
 MsgReadNextLine. .244
 MsgRemoveHeader .245
 MsgSetEncoding .246
 MsgSize .247
 Nls .248
 ODBCInstalled .249
 OpenMemberDB .250
 OpenZip .252
 Print .253
 ProxyAgeCache .254
 PurgeDNSCache .255
 ReadNextMemberRecord .256
 RegGetVal .258
 RegSetVal. .259
 RemovePostFix .260
 Resolve. .261
 Right .262
 RunExecutable .263
 SearchFile. .264
 SendNotification. .265
 ServerDSNExists .267
 ServerValidUser .268
 ServiceStart .269
 ServiceStatus .270
 ServiceStop .271
 SetHTTPCacheable .272
 SetHTTPCookie. .273
 SetHTTPResponseStatus .274
 SetLogType .275
 SetMemberRecord .276
 SetPassword. .277
 SetScriptPriority .278
 SetSessionLanguage .279
 Sleep .280
 SQLCreateDb .281
 SQLExec .282
 Time. .285
 TlsEnabled .286
 ToInt .287
 Trim .288
 UrlDecode .289
 UrlEncode .290
 VerifyUser .291
 WeakDecryptValue. .292
 WeakEncryptValue .293
 WildcardFilterMsg .294
vi Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Contents

Copyright ©
 WildCardMatch. 295
 WordWrap . 296

6 Constants . 297

7 Troubleshooting . 301
7.1 Diagnostics. 302
7.2 List of Script Errors . 302

8 FAQs and Examples . 305
8.1 Example Robots . 305
8.2 Example Timed Events . 306
8.3 Example User Defined GUI . 306
8.4 What is an API? . 306
8.5 What is MML? . 306
8.6 What is a script?. 307
8.7 Examples . 307

Licence Agreements . 313

Installation and Contact Information 323
 Gordano Ltd, 1995-2015 vii

Contents MML Programmer’s Guide
viii Copyright © Gordano Ltd, 1995-2015

Copyright ©
1 Introduction
This guide describes the GMS Mail Meta Language (MML). It covers
the following:
• The fundamentals of MML — the four types of script you can

produce, the language structure, its use of variables, etc.
• The commands which make up the language.
• A summary of the main groups of functions which are available

for you to use to perform specific tasks like file and user
handling.

• A full description of every function, with an example of it in
use. (You can also add your own functions.)

• An example MML script.
• A list of the constants used in MML.
• Troubleshooting and error information.

1.1 Who Should Read this Guide?

Anyone who wants to write or modify MML scripts should use this
guide. The four types of script you can produce are:
• GUI scripts — modify Gordano’s graphical user interface (GUI).

For example, you might want to restrict a domain
administrator’s access to some of the areas they can normally
access. You could use MML to block access to these areas.

• GMS Anti-Spam scripts — these are run on messages as they
arrive.

• Timed event scripts — initiate an event at a specified time, for
example to dial up or to back up your system.

• List messages containing executable MML — these mix HTML
and text with embedded MML. This area is still under
development.

1.2 Other Gordano Guides

The following guides provide additional information:
• GMS Administrator’s Guide — describes the master GMS mail

messaging solution for Linux, Solaris, AIX, Windows 2000 and
Windows NT.

• GMS Communication Server Guide — describes the master
GMS List server solution for Linux, Solaris, AIX, Windows 2000
and Windows NT.

• Gordano Reference Guide — provides detailed technical
information for those wishing to use any of the available simple
or advanced programmer interfaces. This guide describes all
Gordano product Registry parameters, and gives example code
for robots and DLLs. It provides full details of the files
generated and their formats.
 Gordano Ltd, 1995-2015 1

Introduction MML Programmer’s Guide
• GMS User Guide — provides detailed information enabling
ease of use for the users of the system.
2 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Introduction

Copyright © G
1.3 Conventions

The following conventions are used in this guide:

Convention Used for

Courier Lines of code.

Italic Other products, services and guides.

Bold Function names.

UPPERCASE Reference to a file, directory, constant or acronym.

<value> Reference to information you must provide.

[parameter] An optional parameter of a function.

The following symbols are used in this guide:

Tip — gives optional extra information you may want to act on. You
can ignore these if you wish.

Information — gives additional explanation of points. You should
read these.

Warning — warns of areas where you could damage some element
of your system. You must read these.
ordano Ltd, 1995-2015 3

Introduction MML Programmer’s Guide
4 Copyright © Gordano Ltd, 1995-2015

Copyright ©
2 Introducing Mail Meta Language
This section describes the fundamentals of MML It describes:
• The language structure — how programs begin and end,

mixing MML and HTML, use of pages.
• The four different ways to use scripts.
• Limits on variables, functions, etc.
• Special directories which are used in MML.
• The # (hash) operator.
• How expressions are evaluated.
• Notes on the script server.
• How variables are manipulated.
• The form account names can take.
• The order in which variables are processed.
• How image maps are processed.
• Session setup.
• A quick summary of how MML differs from C and Visual Basic.

The next chapters of this manual explain the commands and
functions available for use within a program. For a list of the
constants used with MML, see “Constants” on page 297.
 Gordano Ltd, 1995-2015 5

Introducing Mail Meta Language MML Programmer’s Guide
2.1 Language Structure

A program comprises executable scripts, a series of SESSION
declarations, and some function calls. There’s a semicolon at the
end of every complete command. For scripts which mix MML and
HTML, the MML code appears between "<#" and "#>" characters.

A short program might look like the following. This simply outputs
an HTML page with the words “Hello world” on it.

<# /* This outputs simple text to the browser */
print("Hello world");
#>

Mixing HTML and code

HTML and MML code can be freely mixed. Portions of HTML can
optionally be included in the output (and can be repeated) by
placing them inside the conditional and loop statements. For
example:

<# if (white == black) { #>
<h1>Today White equals Black!!!</h1>
<# } else { #>
<h1>As usual, black does not equal white.</h1>
<# }
#>
Some more HTML code here...

This sends the following HTML script to the Web browser for
display:

<h1>Today White equals Black!!!</h1>
Some more HTML code here...

The two variables white and black are actually equal in this case (assuming
they are not session or form variables). The interpreter automatically gener-
ates new variables when it first finds them mentioned in a script. These are
always initialised to empty. So this IF statement is asking if two empty varia-
bles are equal to each other — which they are.

Pages

The names of all the pages for the script server end in “.mml” or
“.htm”. If no page is specified, the “index.mml” or “index.htm”
page is loaded. If the specified page does not exist, the page
“default.mml” or “default.htm” is loaded instead. Failing this, an
error is returned.

In a release of GLMail all these pages are encrypted in a DLL so that users
cannot change them.
6 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Introducing Mail Meta

Copyright ©
 Comments

C++ style "//" comments are not used. Instead, comments appear
between "/*" and "*/" delimiters, like this:

/* This is a comment */

Escape sequences

Within strings you must use “escape” characters, as follows:
• "\\" to produce "\", a single backslash.
• \" to produce ", a single quote.

2.2 Types of Script

This section describes the four different ways you can use MML.

GUI scripts

To modify the user interface, you write HTML with embedded
MML. The MML code appears between "<#" and "#>" characters,
as described above.

GMS Anti-Spam scripts

These are pure scripts containing no HTML, so you do not need to
use the "<#" and "#>" characters to start/end your script. These
scripts do not output anything to the screen.

When a message arrives, the script runs against it. An example is
filterscripts, which implements the filters you set within the GMS
Anti-Spam interface using Content > Global Filters.

When a message is passed through an MML script by GMS Anti-Spam an X-
MMLScript header is added to the message.

Other custom scripts can be run at different stages of the message
delivery using the Connect > Scripts page in the GMS Anti-Spam
interface. The stages are:
• Connect
• HELO\EHLO
• MAIL
• RCPT
• DATA
• End Of Message

For example an end of message script might be used to discover if a
message contains a .vbs file and redirect the message if it does. Or
a Connect script might be used to reject connections from a certain
 Gordano Ltd, 1995-2015 7

Introducing Mail Meta Language MML Programmer’s Guide
IP address. Multiple scripts may be run at each stage of the
protocol.
• Three types of special local variables are available for these

scripts, Action and rcpt and parameter:

Variable Meaning

Action 0 = OK.

Negative value = warning or redirected.

Positive value = failure.

Rcpt E-mail address to redirect to.

Parameter Error value.

• The “email” message object. This is a special object that allows
you to address the message currently being processed by the
script in a number of ways. Any headers in a message can be
retrieved using the “email” message object, for instance
“email\Subject” and so on. There are also a number of special
modifiers. Each of these is described in the table below..

Modifier Returns

\recipients list of all recipients

\recipient the intended recipient

\replyaddress intelligently works out where responses go

\msgdate the date from the message

\date local date of message

\messageid as given in the headers

\udil unique identifier for message

\status read, unread, etc.

\size size of message

\subject subject of message

\lines no. of lines in message

\header all headers of message

\body complete body of message

Which if any of the above objects are available will very much
depend on which stage of the SMTP protocol the script is being
run. For example, a connection script is run when a remote host
first connects to the SMTP service so absolutely no message
objects will be available to this script.
The further on in the protocol the script is being run the greater
the number of objects that will become available. The rcpt
script will be aware of the message recipients but will not let
you change these recipients as the script is called for each
recipient in turn. By the time you progress through to an eom
8 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Introducing Mail Meta

Copyright ©
script all of the message objects will be available, and all of
these objects can be manipulated.

To return the sender of the message you can use just "mail" with no need to
precede it with "email\". So in the above example if you wanted to find a
match on a message sent by joe@companyA.dom you would use:

if (mail == joe@companyA.dom)

The following example shows how to use "action" and "rcpt" to
redirect messages to a different account, in this case the
postmaster’s:

 if (email\recipient == "companyA.dom\\joe")
 {

 action = -1;
 rcpt = "postmaster@companyA.dom";

 }

This example shows "action" and "parameter" being used to
return a message to its sender:

 if (email\recipient == "companyA.dom\\joe‘")
 {

 action = 2;
 parameter = "500 User does not exist";

 }

Timed events

These are pure scripts containing no HTML, so you do not need to
use the "<#" and "#>" characters to start/end your script. These
scripts initiate an event at a specified time but do not output
anything to the screen.

Two common uses for these scripts are:
• Controlling dial-up — the script can initiate a call at a set time.
• Backing up — emailing the file setup.txt to another site.

List messages containing executable MML

These scripts mix HTML and text with embedded MML, as in this
simple example:

Hello <# Print(user); #>

How are you? <# Print(user); #>
 Gordano Ltd, 1995-2015 9

Introducing Mail Meta Language MML Programmer’s Guide
These scripts can use two special local variables mail and rcpt.

Variable Meaning

mail The address that will be used in the SMTP pro-
tocol FROM address.

rcpt The address that will be used in the SMTP pro-
tocol TO address. This is normlly the email
address that the member has joined the list
from.

The rcpt variable is particularly useful and you may want to use this
in a footer for your lists to indicated the subscribed address. An
example of this might be:

You have subscribed to this list using the email address <# print(rcpt; #>

MML Processing must be enabled for your lists for this to work.
10 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Introducing Mail Meta

Copyright ©
2.3 Program Limits

The following limits are enforced:

Item Maximum number

Number of functions you can define. 64

Maximum function call depth 32

Function parameters 16

Connection and global variables Unlimited

Local variables 64

String lengths Unlimited (if memory)

Integers 32 bit limit

Depth of Include statements 32

Token length 128 bytes

2.4 Directories and Files

MML can access files and directories on your system. For security
the interpreter will not allow access outside the standard ’BaseDir’
for Gordano Products therefore preventing scripts from reading
other system directories and files. There are several "special"
directories:
• ///help - these pages are always available.
• /domain/user/ - pages that are defined in a user’s space.
• ///Script - pages from the BIN file containing server details.
• / - always loads "///index.mml" (as above).

2.5 The # Operator

A variable contained within two "#" signs will be resolved when a
script is processed. The "#" is also termed the "hash operator".
This example shows its use:

User = "joe";
Domain = "GLMail.dom";

if (BitIsSet(#domain#\#user#\Type,AccountTypeForward))
{

Print("This is a forward account");
};

The expression "#domain#\#user#" is resolved at runtime into
"GLMail.dom\joe".
 Gordano Ltd, 1995-2015 11

Introducing Mail Meta Language MML Programmer’s Guide
2.6 Expression Evaluation

The server evaluates expressions using the usual precedence rules.
The following operators are provided, listed here in order of highest
precedence first:

Operator Meaning

+, - Unary positive, unary negative.

*, /, % Multiply, divide, modulo.

+, - Add, subtract.

==,>=,<=,
<, >, !=

Equality, greater or equal to, less than or equal to, less than,
greater than, not equal to.

&&, || Boolean AND, OR.

& String concatenation operator.

MML supports lazy evaluation of && and || statements in much the
same way as in 'C'. So rather than writing code that looks like:

if (fileName != "")
{
 if (ExistFile(fileName))
 {

 }
}

You can write

if (fileName != "" && ExistFile(fileName))
{

}

knowing that the second expression will only get called if the first is
TRUE.

The same is true of || statements as well, MML evaluates only far
enough to establish if the overall expression will be true.

2.7 Notes on the Script Server

Only POST and SMTP can communicate with the WWW:
• SMTP — this is used for GMS Anti-Spam scripts and user

scripts. These are read-only and can be redirected or ignored.
• POST — these are used for LIST scripts. The output from a LIST

script is returned to POST to be sent out.

2.8 Account Names

Account names take three forms:
12 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Introducing Mail Meta

Copyright ©
• E-mail addresses — specified as "user@domain.dom" or as
"domain.dom!user".

• MML account names — specified as "domain.dom\user".
• Usernames — the system tries to map the IP address a user

connects from to a domain. If it succeeds, it then uses that
domain name.

In the description of functions, the term "account" can refer to any
of these three.
 Gordano Ltd, 1995-2015 13

Introducing Mail Meta Language MML Programmer’s Guide
2.9 Variables

This section describes the variables used in MML.

Variable manipulation

The interpreter uses “lazy” variable manipulation. That is, you can
be lazy and leave it to try and work out what you mean. Unlike C,
in MML you do not need to declare variables or declare what type a
variable is. Where possible, the interpreter converts variable types
to produce sensible results.

For example, if:
• s1 = "string".
• s2 = "another".
• s3 = "s1".
• n1 = 3.
• d1 = "1997-09-21 14:00:03".

Then the following results could be expected:

Sum Result Description

s1 + s2 0 Adds the values of two strings which are
zero.

S1 > s2 TRUE Compares two strings without taking case
into account.

S1 + n1 3 Converts the number into a string for the
addition.

D1 + n1 1997-09-24 14:00:03 Advances the date by three days

d1 + s1 "1997-09-21
14:00:03string"

Converts date to standard format string
and concatenates the two strings.

s1& #s3# "stringstring" The hash (#) means that the internal expres-
sion should be resolved, giving s1 + s1. The
same string is then concatenated twice.

Note the following:
• The only characters allowed in variable names are these:

 abcdefghijklmnopqrstuvwxyz0123456789_#\

• Variable names are case-insensitive.
• The characters "#" (hash) and "\" are reserved and have special

meanings. The hash is described above; see “The # Operator”
on page 11. The "\" is used to indicate subsets of variables -
also known as "objects" (see below).
14 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Introducing Mail Meta

Copyright ©
Variable search order

The search order for variables is as follows:
1. Constants (the highest priority).
2. Local variables, either within or outside functions. (Those within

a function take precedence.) These are used when you do not
declare a variable. They are set to 0 or to an empty string.

3. Global and session variables. These control access rights.
4. Connection variables — these are used through URLs or Form

variables.

Variable types

There are several types of variable in the interpreter. The
differences between these are very important. They can be
classified as follows:

Type Function

Session
Variables

A session is the period of time between first accessing the system
and the session ending, for example at logoff. The session vari-
ables can be declared as they are needed. These variables are
declared in the following way:

global MyGlobal;

If at any stage you know a session variable will no longer be
required it can released in the following way:

destroy MyGlobal;

Form Variables These are the variables that come directly from the Web browser,
plus some additional variables from the local Web browser, for
example, the remote IP address of the user.

In addition, if any variables are entered on the URL or a form that
is POSTed to the Web server, these variables will appear here.

The variables which are returned depend on the local Web
browser. Those we create are SCRIPT_LENGTH, SCRIPT_NAME,
REMOTE_HOSTNAME, LOCAL_HOSTNAME, SERVER_NAME
SERVER_PORT, SERVER_PROTOCOL and SERVER_SOFTWARE.

Other values come from the URL and POST action.

Local Variables The interpreter automatically generates local variables if it finds a
variable it does not recognise.

These variables are only available to the functions in that routine.
Values can be passed to other routines in the function as usual.

Object Variables This is a set of variables that always contain at least one "\" char-
acter. The number of "\" characters determines which group of
variables they belong to. These are described below in more
detail.
 Gordano Ltd, 1995-2015 15

Introducing Mail Meta Language MML Programmer’s Guide
Object variables

This table gives more details of the object variables defined above:

Constants Constants are also available so there’s no need to use special val-
ues in script. These are listed in “Constants” on page 297.

Special Variables A list of special variables that gives more information about the
current status of the server. See the section on these in “GMS
Anti-Spam scripts” on page 7.

Object Function

Gordano Gordano objects all have two "\" characters in them. They are all of the
form domain-name\user-name\variable-name. Gordano Products have
three types of variables internally — global, domain-specific and user-
specific. For example, \\PostRetryTime is a global variable, net-shop-
per.co.uk\\FaxCompanyName is a domain variable and net-shop-
per.co.uk\brian\Aliases is a user variable.

The following special values return a list of parameters:

• \\VariableNames - returns a string of all global variable names.

• \\DomainNames - returns a string of all domain names.

• domain\\VariableNames - returns a string of all domain variables.

• Domain\\UserNames - returns a string of all user names in the
domain.

• domain\\NumberUsers - returns the number of users in that
domain.

• domain\user\VariableNames - returns a string of all user's variable
names.

The "VariableNames" synatx returns a space separated list of URL
Encoded names.

SQL SQL access objects contain a single "\" and use a handle created using
the id = SQLQuery(). Once the query has been executed the variables
have the following meanings:

• id\<column-name> - contents of last SQLGet command.

• id\ColumnNames - list of all the column names returned by
SQLQuery.

Once a call is made to SQLClose, all values are destroyed.

Type Function

Session
Variables

A session is the period of time between first accessing the system
and the session ending, for example at logoff. The session vari-
ables can be declared as they are needed. These variables are
declared in the following way:

global MyGlobal;

If at any stage you know a session variable will no longer be
required it can released in the following way:

destroy MyGlobal;
16 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Introducing Mail Meta

Copyright ©
Persistent variable storage

Variables can be stored either at system, domain or user level, it is
up to you where you store them. To set them as system variables
you just set

 \\variablename=value

If you want to store on a domain basis use
domain\\variablename=value

and on a user basis it is
domain\user\variablename=value

Retrieval is similar so for example to retrieve a global variable use
myvar=\\variablename

The domains and variablenames are absolute

2.10 Processing Image Maps

The way in which the Web client returns information from image
maps makes their use by the Web server difficult in certain

Message A message object is created by the function id = MsgCreate. The
object "id" can then be used to obtain the following information:

• id\<n> - line n from the mail message. 1 = first line of body.

• id\lines - number of lines in the message.

• id\header - returns string of header of the message.

• id\body - returns string of the body of the message.

• id\size - size of the message bytes.

• id\recipients - list of recipients for this mail message.

• id\MAIL - the "mail" clause for the message.

• id\<header-clause> - the header clause requested.

Once a call is made to MsgClose, all values are crystallised.

Timed Sets up a timer event, created by calling "TimedAdd". The events are:

• Id\datetime - date/time of the first time the event happens.

• Id\repeat - how often to repeat the event (in seconds).

• Id\script - name of script to run.

• Id\next - next time the script is going to be run.

• EventNames - a space-separated list of names.

Folder A folder object is returned by the function FolderOpen and destroyed
by FolderClose. A folder is a mailbox. You can access:

• folderId\NumberOfMessages — number of messages in the
mailbox.

• folderId\FolderModified — whether or not it has been changed.

• folderId\<n> — the number of the message in the folder.

• folderId\1 or folderId\1\mail — you might set "MsgId = folderId\1".
Note that this is read-only. Do not close it - use MsgCopy if
necessary.

Object Function
 Gordano Ltd, 1995-2015 17

Introducing Mail Meta Language MML Programmer’s Guide
circumstances. For example, if you wish to display lots of "UP"
buttons as GIFs (generated by a loop) and then detect which
button is pressed by using the URL, you will have problems!

Consider the line:
<input type=image src="up.gif" name="map.1">
<input type=image src="up.gif" name="map.2">

When the first image is selected — at (4,6) — the Web client
returns two variables:

map.1.x = 4
map.1.y = 6

However, we need to know which of the two images was selected,
not where in the image the selection was made. Therefore the
Web server generates a further variable:

map = 1

This means we can look at the variable called Map and find out
that the first image was selected. This conversion rule is a general
rule — any variable with a dot in it has an additional version made
with the first part equal to the second.
18 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Introducing Mail Meta

Copyright ©
2.11 Session Setup

A session is established as follows:
1. The Web server waits without any connections.
2. A connection is made to the server, probably from a Web

browser.
3. A session is created. At this point nobody has logged on, no

user is verified and no global variables have been defined.
4. The session id is allocated in one of three ways:

• Using the IP address the connection came from.
• Using a Browser cookie, a string of 100 characters.
• Using both IP address and Browser cookie. This is the

default.
5. When the session is set up, the time is recorded. This is used to

check timeouts etc.
6. Session variables are set up as required during the session.
7. The session ends when the user logs off or a timeout occurs.

Note that the logon etc. come after the session is created.

If a second connection is made to the server, the server checks to
see whether this is already set up by examining its IP address and
cookie.

2.12 Tips for C and VisualBasic Programmers

If you are used to C or VisualBasic, note that MML differs from it in
several main ways:
• Variable names etc. are case-insensitive.
• Variables are not strictly typed.
• Variable names can be substituted.
• There’s no space between "Else" and "If". MML uses "ElseIf".
• There are no "++" and "--" operands.
• The first item in a list is item 1, not item 0.

MML, VisualBasic and C all use "\r\n" to produce a CRLF (line feed).
 Gordano Ltd, 1995-2015 19

Introducing Mail Meta Language MML Programmer’s Guide
20 Copyright © Gordano Ltd, 1995-2015

Copyright ©
3 Commands
This section describes the following MML commands. These are the
building blocks of MML scripts:
• Def — declares a new function.
• Do — executes a statement in a block
• End — terminates processing of the script.
• For — starts a loop.
• If .. Else — if the condition is true executes the first statement,

otherwise executes the second statement.
• Include — loads a file.
• Return — returns from a function.
• Session (also called Global) — marks the variables as session

variables which will persist until the session is closed.
• While — executes statements in a block while the condition is

true.

3.1 Def

Declares a new function. If you cannot find the function you want
listed in the following chapter, use this command to define it.

Syntax
Def function(x,y,…) { ….statements…. }

Remarks

Note that:
• You can use "return" to return a value.
• Do not pass anything but an integer or string to a function. For

example, do not pass it a file or file handle.
• You can define up to 64 functions in one session. The

maximum call depth (one function calling others) is 32.
• Functions can be used recursively.

Example
def PrintMsg(x)
{

print ("<h1 align=center>", x, "</h1>\r\n");
}

PrintMsg("Hello");

Result
<h1 align=center>Hello</h1>
Gordano Ltd, 1995-2015 21

Commands MML Programmer’s Guide
3.2 Do

Executes all the statements in the statement block until the
condition is no longer TRUE. (This means that all the statements
will always be executed at least once.)

Syntax
do { ….statements…. } while (condition)

Example

count = 0;
do
{

print("dinah ");
count = count + 1;

}
while(count < 7);
print("Batman!");

Result
dinah dinah dinah dinah dinah dinah dinah Batman!

See also

While()

3.3 End

Terminates processing of the script and writes all current output.

Syntax
end;

Example

print("Hello
");
end;
print("You will never see this!
");

Result

Hello

3.4 For

On entry to a loop the For command:
1. Executes the "start_statement".
2. Processes the condition and, if true, executes all the statements

in the following block.
3. Executes the "end_statement" and re-evaluates the condition.
22 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Commands

Copyright ©
Syntax

for (start_statement; condition; end_statement)
{

statements...
}

Remarks

If the condition is false, execution skips to the end of the loop and
continues from there. Note that the open and close statement
blocks are mandatory.

Example

for (i = 0; i < 10; i = i + 1)
{

print(i);
}

Result
0123456789

3.5 If..Else

If the condition evaluates to a non-zero value, the statement which
follows it is executed. The open and close statement block symbols
are mandatory.

Syntax

if (condition) { statement1; statement2; etc. }

elseif (condition) { statement3, statement4 etc.}

else { statement5; statement6; etc. }

Remarks

There’s no space between the "Else" and "If" in "ElseIf".

You can also use "Elif" instead of "ElseIf".

Example

This shows use of If and Else with the AddZip function:

if (zip)
{
 if (!AddZip(zip, "\\\\Timed.txt"))
 {
 print("Couldn't add to zip");
 }
 CloseZip(zip);
Gordano Ltd, 1995-2015 23

Commands MML Programmer’s Guide
 print("Opened zip.");
}
else
{
 print("Failed to open zip");
}

3.6 Include

Loads the given file and starts interpreting it.

Syntax
include "filename";

Remarks

An invalid or non-existent filename generates an error.

Variables are given scope as though the included block of code was
copied directly into the place where the Include command appears.

Example

include "/index/header.mml";

3.7 Return

Returns from a function immediately.

Syntax
return;

Remarks

Using Return is a poor alternative to encasing a block in an If
statement.

Example

Def MyFunc()
{
Msg = MsgCreate("dean@test.dom","fred@copa.dom","Setup");

if (!msg)
return;

etc. etc.
}

3.8 Session (also called Global)

Marks the variables as session variables.
24 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Commands

Copyright ©
Syntax
session variable_name, variable_name;

Remarks

The session variables persist until the session is closed.

Example

session var1, var2;

3.9 While

Executes all the statements in the statement block while the
condition is TRUE.

Syntax
While (condition) { statement }

Remarks

If the condition is not true, the statements are not executed at all.

Example

while (i < 10)
{

print(i);
i = i + 1;

}

Result
0123456789

3.10 Connect

Marks the variables as connection variables.

Syntax
connect variable_name, variable_name;

Remarks

The connection variables persist until the session is closed or
destroyed.

Example

connect var1, var2;

3.11 Destroy

Destroys variables previously marked as session variables.
Gordano Ltd, 1995-2015 25

Commands MML Programmer’s Guide
Syntax
destroy variable_name, variable_name;

Remarks

Destroys the session variable.

Example

destroy var1, var2;
26 Copyright © Gordano Ltd, 1995-2015

Copyright ©
4 Function Groups
This section summarises the main groups of MML functions. It gives
an overview of the way you should use related functions.

The groups covered are:
• Messages.
• Users.
• The membership database.
• Files and directories.
• Folders (mailboxes).
• Strings.
• List strings.
• Bits and bit masks.
• Times, dates and events.

Some functions do not fall into any group. These are covered with
all the other functions in the following chapter, which describes
every function with its syntax, a description and an example of its
use.
Gordano Ltd, 1995-2015 27

Function Groups MML Programmer’s Guide
4.1 Messages

Use the message functions to produce or edit messages. Start by
calling MsgCreate to return a message handle for use by the other
functions.

Use these functions to build a new message:
• MsgCreate — starts generation of a new message.
• MsgClose — completes creation of a message.
• MsgCopy — copies a message. This is used mainly in

script.mml, which perform’s GMS Anti-Spam’s message
filtering.

• MsgAddBody — appends a line to the message body.
• MsgAddFile — attaches a file to a message.
• MsgAddHeader — adds a new clause to the header.
• MsgAddRecipient — adds an RCPT clause.

This example builds a message to send Lou a zip file:

Msg = MsgCreate("joe@companyA.dom","lou@Test.dom","Your file");
if (Msg)
{
 MsgAddBody(msg, "Hello Lou");
 MsgAddBody(msg, "");
 MsgAddBody(msg, "Here’s the file");
 MsgAddBody(msg, "Joe");
 MsgAddFile(msg,myzip,binary)

 Print(Msg\Recipient,"
");
 Print(Msg\Date,"
");

 MsgClose(Msg,MSG_SEND);
}

Use these functions to edit an existing message:
• MsgReadFirstLine, MsgReadNextLine — read the first then

subsequent lines of a message.
• MsgEndOfLines — tests for the end of the message. Use this

in a message reading loop.

This example edits a message:

line = MsgReadFirstLine(Msg);
while (!MsgEndOfLines(Msg))
{
 Print(ConvertToHTML(line));
 Print("\n");

 line = MsgReadNextLine(Msg);
}

28 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Function Groups

Copyright ©
4.2 User Functions

Use these functions to produce or edit accounts. You can also
encrypt passwords and check that a user’s details are valid.

The functions are as follows:
• AddUser — adds an account. For the account to start

operating, the script must set the TYPE variable for the account
using the appropriate constants.

• AddAlias — adds an account alias.
• DelUser — deletes an account. (Before deleting a domain, you

must delete users and their files.)
• DelUserFiles — deletes a user’s files. Use this before DelUser.
• ExistUser — checks that a given user exists.
• FilterUsersOfType — lists accounts of the specified type.

This example shows :

Domain = "GMS.dom";
NewUser = "joe";
ForwardEmail = "joe@companyA.dom";

if (!ExistUser(#domain#\#NewUser#))
{

if (AddUser(NewUser, Domain, "password"))
{

#domain#\#newuser#\Type = AccountTypeMailbox;
#domain#\#newuser#\Forward = ForwardEmail;

}
}

Other miscellaneous user functions are as follows:
• GetLogonUser — returns the session’s account name.
• EncryptPassword — encrypts an account’s password.
• VerifyUser — checks that an account and password are valid.
Gordano Ltd, 1995-2015 29

Function Groups MML Programmer’s Guide
4.3 Membership Database Functions

The membership database records the members of lists. This is a
flat file or an SQL database.

The functions use two separate handles:
• The database handle opened using OpenMemberDb. This is

used by the functions marked below by an asterisk*.
• The member handle opened by GetMemberRecord and used

by ReadNextMemberRecord, SetMemberRecord and
MemberFormat.

Use these functions for membership database management:
• OpenMemberDB — opens the specified member database

and produces its database handle.
• CloseMemberDB* — closes a member database file.
• GetMemberRecord* — opens a member record and produces

the member handle which the following three calls use.
• ReadNextMemberRecord* — read the next record in the file.
• SetMemberRecord — sets information on a member.
• MemberFormat — extracts variables from a member record.
• DeleteMemberRecord deletes a member record from the

database.

This example opens a member database and prints the member
field of all its records:

mydb = OpenMemberDB("test.com\\testlist",FILE_READ);

if (mydb)
{
 while (mymember = ReadNextMemberRecord(mydb))
 {
 Print("Account: ",mymember\member,"
");
 }

 CloseMemberDB(mydb);
}

These two do not use the handles so can be used independently:
• IsMemberOfList — tests whether a named account is a

member of an NTList list.
• GetAllMembers — lists the list members. This automatically

opens the database, obtains the results then closes the
database.
30 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Function Groups

Copyright ©
4.4 File and Directory Functions

There are three groups of file functions, as described below. The
functions let a verified account use absolute paths.

For reading from/writing to files:
• FileOpen — opens a file, returning a file handle for use by the

four following functions.
• FileClose — closes the file.
• FileReadLine, FileWriteLine — read from/write to a file.
• FileEOF — tests for the end of the file. Use this in a file reading

loop.

This example shows how to use these functions:

file = FileOpen(Resolve("#dir#\\#filename#"),FILE_READ);
if (file)
{
 while (!FileEof(file))
 {
 Print(FileReadLine(file), "
\r\n");
 }
 FileClose(file);
}

For general file management use these:
• ExistFile — tests whether a single file exists.
• FindFiles — lists files or directories, usually matching a

wildcard.
• SearchFile — searches a file for the given string.
• DelFile — deletes a file.
• FileReplace — replaces one file with another.

There are similar functions for use with directories — CreateDir,
DelDir and DirSize.

For zip files use these:
• OpenZip, CloseZip — open a zip for use by AddZip, then

close it.
• AddZip — adds a file to a ZIP archive.

You cannot use MML to do things like extract files from a Zip file
Gordano Ltd, 1995-2015 31

Function Groups MML Programmer’s Guide
4.5 Folder (Mailbox) Functions

These functions handle folders (mailboxes). FolderOpen returns a
folder handle which is used by those functions marked below with
asterisks. The other functions use the folder’s name directly.

The functions comprise three groups.

Use these for folder handling:
• FolderOpen — opens a folder.
• FolderClose* — closes a folder.
• FolderDelete* — deletes a folder.
• FolderAppendMsg — appends a message to a folder.

This example appends a message from Lou’s mailbox to Joe’s
mailbox:

folder1 = FolderOpen("companyA.dom\\users\\lou\\inbox.mbx");
msg = MsgCopy(msg_44);

folder2 = FolderOpen("companyA.dom\\users\\joe\\inbox.mbx");
FolderAppendMsg(folder2,msg);

folderclose(folder1,FALSE);
folderclose(folder2,TRUE);

Use these to obtain folder information:
• FolderList — lists folders (you can specify a wildcard).
• FolderGetMessageCount — counts the messages in a folder.

Messages have a status setting, one of the "FOLDER_MSG_"
constants listed in “Constants” on page 297. The following
functions test or control the status of a folder:
• FolderMsgCheckStatus* — tests a message’s status.
• FolderMsgSetStatus* — gives a message the specified status.
• FolderMsgUnsetStatus* — removes a status value.
32 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Function Groups

Copyright ©
4.6 Connection Functions

These functions control dial-up and connection to POP accounts.
They also return information on connections’ parameters, IP
addresses, etc.

For a dial-up connection use:
• AutoConnect starts a dial-up connection.
• AutoDisconnect drops the current connection (depending on

the timeout period, the connection count and whether the
connection was established by GMS).

• IsConnected reports the status of a RAS connection.

CollectFromPop collects messages from a POP account for local
delivery. You can sort mail based on e-mail address, header clause,
etc. and deliver to a single address, a list of addresses, a default
address, etc.

For information on connections use:
• GetConnectionVariables lists a connection’s parameters.
• GetHostedIps lists IP addresses of all network cards on the

system.
• GetHostname performs a reverse lookup on the address

specified.
• GetIPAddress looks up the given host and returns its IP

Address.
• GetLocalDomain returns the domain name associated with an

IP address.
• GetLocalIps returns IP addresses which are local to the

network.
• GetLocalServerAddress returns the IP addresses which the

user’s Web browser has connected to the server on.
• GetRemoteConnAddr returns the IP address of the Web

browser used by the user connecting.

If you use a load sharing array of servers:
• GetLoadsharingServer returns the server in the load sharing

array which handles the account.
• GetLoadsharingServerList lists the servers in the load sharing

array.
Gordano Ltd, 1995-2015 33

Function Groups MML Programmer’s Guide
4.7 String Functions

A string is a set of characters. The string functions let you cut parts
of a string out, find substrings within a string, etc.

A string containing a number of separate elements, for example "ab1 ab2
ab3" is termed a list string; see the following section for functions which
manipulate the individual elements.

The functions are:
• Asc — returns the ASCII value of the first character.
• Len — returns the length of the string.
• Left, Right — return n characters from the left or right hand

side of the string.
• Mid — returns n characters from within a string.
• Match — compares two strings.
• Trim — removes spaces from either end of a string, also tabs,

carriage returns and line feeds.

For example, the following function prints “World”:

z = "World Wide Web";
Print(left(z, 5));

While this prints “14”:

Print(len("World Wide Web"));
34 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Function Groups

Copyright ©
4.8 List String Functions

A list string is a string containing a number of separate elements,
for example "ab1 ab2 ab3". The elements are normally separated
by spaces, but most of the functions can treat strings separated by
other characters.

Use the "LS" functions to manipulate list strings as follows:
• LSAppend and LSAppend2 — add elements to a string.
• LSDelete and LSDeleteElement — cut elements from a string
• LSElement, LSSubset — obtain one or more elements.
• LSFind — report an element’s position in the string.
• LSLength — counts the number of elements.
• LSMatch , LSFirstMatch — find elements in a string.
• LSOrder, LSReplace — change the string in some way.

For example, this function prints "def ghi", obtaining two elements
from the list, starting with the second:

LSSubset("abc def ghi jkl mno","def",2);

This function prints "hello def", deleting the second element from
the list:

LSDelete("hello abc def", 2);
Gordano Ltd, 1995-2015 35

Function Groups MML Programmer’s Guide
4.9 Bit and Bit Mask Functions

The bit handling functions let you compare and change numbers
efficiently. All these functions work on integer numbers. The least
significant bit is bit 0.

You can use these functions for any bit variables you use. GMS uses
bit masks for variables including user type and list member
properties; see the GMS Reference Guide for details.

The functions are:
• BitAnd — performs a bitwise AND on two integer numbers.
• BitIsSet — tests whether bit n is set in a number
• BitMaskIsSet — tests whether all the mask bits are set in a

number.
• BitReset — resets bit n in a number to 0.
• BitSet — sets bit n to 1.

This example tests whether all the bits in 13, the mask, are also set
in 9:

if (BitMaskIsSet (9, 13))
{

Print("1 - All bits are set.",
);
}

This example turns off the mailbox bit for an account:

#domain#\#user#\Type = BitReset(#domain#\#user#\Type,AccountTypeMailbox));
36 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Function Groups

Copyright ©
4.10 Times, Date and Event Functions

These functions comprise two groups, as described below.

Use these for event handling:
• AddTimed — adds a timed event to the schedule. Use this for

dial-up, zipping logs, etc.
• DelTimed removes an event from the schedule.

Use these for general date and time use:
• ConvertToTime — converts an input string into a standard

time format.
• Date returns the current date in standard format. Use it to

create a date for use elsewhere.
• DateTimeFormat takes a date structure and prints it in the

format requested
• Time returns the current time or outputs the time specified.

For example, this function returns the standard hh:mm:ss time
format "19:00:00":

ConvertToTime("19:00");
Gordano Ltd, 1995-2015 37

Function Groups MML Programmer’s Guide
38 Copyright © Gordano Ltd, 1995-2015

Copyright ©
5 Functions
This section describes all the script server functions which we
provide for you. You can call these from within your MML scripts.

Introduction

In addition to the functions described in this chapter, you can
create new functions in two ways:
• Using the script command Def; see “Def” on page 21.
• Using a DLL; see the GMS Reference Guide for details.

Note the following:
• Where there are multiple parameters and none of these is

marked as optional, you must supply them all, though you can
use empty strings.

• Optional parameters appear in [and] brackets.
• Unless stated otherwise, the first element in a list is element 1,

not element 0.

Within strings you must use "escape" characters, as follows:
• "\\" to produce "\", a single backslash.
• \" to produce ", a single quote.

Return values

Many functions return a value, indicated in the syntax as shown
below for this function which returns a string:

str = Chr(int)

These values are grouped in this chapter as follows:

Value Meaning

addr An address.

n An integer.

str A string.

t A time or date/time string.

tf TRUE/FALSE, used for functions which test something.

user An account name.

x Any other variable type.

If a function only returns a TRUE/FALSE value to show whether it
succeeded or failed, no return value is shown in the command
syntax. For these, check the details for each function under the
heading “Return”.
Gordano Ltd, 1995-2015 39

Functions MML Programmer’s Guide
Files and absolute paths

As a security precaution, access to absolute paths is restricted. Note
the following:
• Anyone can open a file which they can access without

specifying its absolute path.
• Accounts which are not verified cannot access absolute paths.
• If the account is verified and the absolutepath parameter is set

to TRUE, the account can access absolute paths.
• If the account is empty, use the domain's directory. If the

domain is empty, use the Gordano base directory.

Directories

Specify a directory as "domain\user\directory name". Both domain
and user can be empty.
40 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
AddAlias

AddAlias creates an alias for the specified account. Adding aliases
is a complex process and requires that both the original and alias
accounts be modified and cross-linked correctly. This is particularly
complex when you consider that one name may be an alias for two
different accounts. Therefore it is strongly recommended that the
AddAlias() and DelAlias() functions are used in order to maintain
user database integrity.

AddAlias(account_name,new_alias)

 Parameters

Account_name

The account’s name in the form "domain\username".

New_alias

The alias to add for this account.

Returns

TRUE if the alias is created successfully, otherwise FALSE.

Remarks

AddAlias works with NT User Database and virtual domains.

Example

This adds the alias "Sales-team" to Joe’s aliases:

AddAlias("companyA.dom\\users\\joe","Sales-team");

See also

AddUser, DelAlias

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 41

Functions MML Programmer’s Guide
AddDomain

AddDomain creates a new GMS domain. Adding a domain to a
system is a complex process and the results depend on the domain
type being created. The addDomain() function takes the minimum
number of parameteres required to create a domain. Full and
Virtual domains will automatically have a "postmaster" account
created. A list of IP addesses available for the full domain may be
obtained using the GetHostedIPs() function. On a haevily loaded
system, the creation of a domain may take a considerable time (eg.
1 minute). As soon as the function returns, the domain is
functioning and can process email and web activity.

Only a verified account can use this function.
Attempting to create a full domain with an IP address that is already used
will fail

For a full domain, use:

AddDomain(domain,domain_type,ipaddress)

For a POP or robot domain, use:

AddDomain(domain,domain_type)

For a virtual domain, use:

AddDomain(domain,domain_type,base_domain,postfix)

Parameters

Domain_name

The new domain’s name.

Domain_type

DomainTypeFull, DomainTypePOP, DomainTypeRobot or
DomainTypeVirtual.

ipaddress (full domain only)

ip address to be assigned to the domain.

Base_domain (virtual domain only)

The full domain the virtual domain is in. For details, see the
Gordano Administrator’s Guide.

Postfix (virtual domain only)

The name used to differentiate users in virtual domains.

Returns

TRUE if the domain is created successfully, otherwise FALSE.
42 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Example

if (AddDomain("companyA.dom", DomainTypeFull))
{
 if (AddUser("joe","companyA.dom","password"))
 {
 Print("Added user \"joe\" to new domain.
");
 Print("Account created on",companyA.dom\joe\DateCreated);
 }
 else
 {
 Print("Failed to add user to new domain.
");
 }
 Print("Domain created on ",companyA.dom\\DateCreated);
}
else
{
 Print("Failed to create domain.
");
}

Result
Added user \"joe\" to new domain.
Account created on 12-04-99
Domain created on 10-04-99

See also

AddUser, AddSession, GetHostedIPs
 Gordano Ltd, 1995-2015 43

Functions MML Programmer’s Guide
AddHTTPResponseHeader

AddHTTPResponseHeader adds the specified text to the HTTP
Response header.

AddHTTPResponseHeader(value)

Parameters

Value

the text to add to the HTTP response header.

Returns

Nothing

Example
AddHTTPResponseHeader("your text here");

See Also

SetHTTPResponseStatus
44 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
AddPostfix

AddPostfix adds the specified text as a postfix for the specified
domain.

AddPostFix(domain,postfix)

Parameters

domain

the domain the postfix is to be added to.

postfix

the postfix to add to the domain.

Returns

Nothing

Example
AddPostFix("CompanyA.dom","postfix1");

See Also

GetPostFixes, RemovePostFix, AddDomain
 Gordano Ltd, 1995-2015 45

Functions MML Programmer’s Guide
AddrInRange

AddrInRange tests whether a specified IP address is within the
range specified.

AddrInRange(IPAddressList,IPAddress)

Parameters

IPAddressList

A range of IP addresses, either a space-separated list or a
range defined using a wildcard.

IPAddress

The IP address to check.

Remarks

This call supports IP address logic as follows. In all these cases the
letters a to e represent numbers in the range 0 to 255:
• a.b.c.d — a specific IP address, for example 194.194.194.194.
• a.b.c.* — all IP addresses beginning a.b.c. For example,

194.194.194.* gives addresses in the range 194.194.194.0 to
194.194.194.255.

• a.b.c.d-e — a range of IP addresses from d to e.
For example, 194.194.192-194.* gives addresses in the range
194.194.192.0 to 194.194.194.255

• a.b.c.d/n — means use the first n bits.
For example, 194.194.194.194/22 gives addresses in the range
194.194.192.0 to 194.194.195.255.
Similarly, 194.194.194.194/16 gives IP addresses in the B Class
range 194.194.0.0 to 194.194.255.255.

• !a.b.c.d — the "!" at the beginning of the address means
NOT.
For example, !194.194.194.194 means not 194.194.194.194.

Returns

TRUE if the address is within the range, otherwise FALSE.

Example
if (AddrInRange(194.211.0.*,194.211.0.99))
{
 Print("Address is in range.
");

}Result

Address is in range.

See also

Bound
46 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
AddSession

AddSession validates the session. It validates the client, lets them
see files outside their base directory and gives them access to all
MML functions.

AddSession(account[,password])

Parameters

Account

The account which made the connection.

Password

If the password is supplied and matches correctly, the
function gives the session VerifiedScript status.

If no password is supplied, the function adds a session for a
non-verified account, for example an anonymous list user.
You then use the call GetLoggedOnUser.

Returns

TRUE if the function succeeds, FALSE if the password fails or the
account and domain do not exist.

Remarks

If you access from an unknown connection, we create a session.
This means the session already exists when you use this function. In
this case, the function simply validates the account.

Example

AddSession("companyA.dom\\joe","wh1sky");

See also

DelSession, GetLoggedOnUser, VerifyUser
 Gordano Ltd, 1995-2015 47

Functions MML Programmer’s Guide
AddTimed

AddTimed adds a timed event to the schedule. Use this for dial-
up, zipping logs, etc.

AddTimed(name,date,repeat,script,days,start_time,
finish_time[,parameters])

 Parameters

Name

The name of the event created (a string with no spaces).

Date

The date the first event starts.

Repeat

How often to repeat the event (in seconds).

Script

The script to run. The base directory is the Gordano
directory.

Days

A string of digits in the range 0-6, representing days of the
week (0 = Sunday). For example “15” = Monday and
Friday.

Start_time

The event start time. "01:00" is 1 AM, "23:00" is 11 PM.

Finish_time

The event end time. "01:00" is 1 AM, "23:00" is 11 PM.

Parameters (optional)

A value passed to the script when it is executed. The script
accesses it as the variable "parameters".

Returns

TRUE if the event is created successfully, otherwise FALSE.

Remarks

A timed event runs in the context of a logged-on verified account.
There’s no need to log on.

Only a verified account can use this function.
48 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
The schedule list is held in memory by the Web server and written
to disk each time it changes as the file timed.txt.

This function has the following values that can be accessed using
the event name followed by "\<value>". Each value can be set and
read:
• EventNames — list of event names.
• Id\ — date and time when the event will first happen.
• Id\repeat — how often to repeat the event (in seconds).
• Id\script — name of script to run.
• Id\next — the time the script is next going to be run.

Example

This example creates an event and then prints out all the details on
it:

if (AddTimed("event","05-06-99",60,"\timed.mml","0123456",
"09:00:00","17:30:00"));
{
 Print("Events to run = ",EventNames,"
");
 Print("Start time = ",event\datetime,"
");
 Print("Repeat = ", event\repeat, "seconds","
");
 Print("\timed.mml = ", event\script,"
");
}

Result

Event to run = event
Start time = 05-06-99 09:00:00
Repeat = 60 seconds
Script = \timed.mml

See also

DelTimed, AddSession
 Gordano Ltd, 1995-2015 49

Functions MML Programmer’s Guide
AddUser

AddUser creates a new account with directory space for files.

AddUser(account,domain,password,[force],[profile])

Parameters

Account

The name of the account.

Domain_name

The new account’s domain.

Password

The user’s password.

Force

If user exists, setting force to TRUE will over write all the
users details. If it is a new user set to FALSE.

Profile

The name of the profile to apply to the user.

Returns

TRUE if account creation succeeds, otherwise FALSE.

Remarks

Accounts are created without features (POP3 account, forward
etc.). For the account to start operating, the script must set the
TYPE variable for the account using the appropriate constants
OR’ed together.

Do not use this function to create SAM accounts.

Once the entry is created, e-mail can arrive for the new account. If
the licence limits are exceeded, no account is created.

Example

This example shows how to create a new account with a mailbox
and assign it to the Domain Base Profile for the first domain on the
system:

Domain = "GMS.dom";
NewUser = "joe";

if (!ExistUser(#domain#\#NewUser#))
{
 if (AddUser(NewUser, Domain, "password", false, 1))

Only a verified account can use this function.
50 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
 {
 #domain#\#newuser#\Type = BitSet(#domain#\#newuser#\Type,AccountTypeMailbox);
 }
 else
 {
 Print("Could not create new account.
");
 }
}
else
{
 Print("Account already exists!
");
}
This example checks if a user account exists:
Domain = "GMS.dom";
NewUser = "joe";

if (ExistUser(Resolve("#domain#\\#NewUser#")))
{
 Print("Account Exists.
");
}
else
{
 Print("Account does not exist.
");
}

See also

AddDomain, AddSession, DelUser, DelUserFiles, ExistUser
 Gordano Ltd, 1995-2015 51

Functions MML Programmer’s Guide
AddZip

AddZip adds one or more files to a ZIP archive.

AddZip(zipfile,files[,separator][,absolutepath])

Only a verified account can add files with absolute paths.

Parameters

Zipfile

The ZIP archive to add the file to.

Files

A list of files to be added to the ZIP archive.

Separator (optional)

The character which separates files in the list, if this is not a
space.

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns

TRUE if the file is added successfully, otherwise FALSE.

Remarks

You cannot use MML to do things like extract files from a Zip file.

Example

zip = OpenZip("\\\\Test.zip");
if (zip)
{
 if (!AddZip(zip, "\\\\Timed.txt"))
 {
 Print("Couldn't add to zip");
 }
 CloseZip(zip);
 Print("Opened zip.");
}
else
{
 Print("Failed to open zip");
}

See also

CloseZip, OpenZip
52 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
AllowAbsolutefileNames

AllowAbsoluteFilenames returns the status of the
AllowAbsoluteFilenames global flag.

n = AllowAbsoluteFileNames()

Parameters

None.

Returns

TRUE if the global flag allowing absolute filenames is enabled,
otherwise FALSE.

Example

print(allowabsolutefilenames());

Result

0

 Gordano Ltd, 1995-2015 53

Functions MML Programmer’s Guide
ArchiveAddMessage

ArchiveAddMessage adds the specified message to the message
archive.

ArchiveAddMessage(filename[,allowabsolute])

Parameters

filename

the filename of the message to be added.

allowabsolute(optional)

if set to true allows the use of absolute filenames.

Returns

Nothing

Example

if (!ArchiveAddMessage("CompanyA.dom\\listname\\archivein\\vvfaaaaa.mbx"))
 {
 print("Failed to add message
");
 }
 else
 {
 print("Message added to archive
");
 }

if (!ArchiveRefresh("CompanyA.dom\\listname"))
 {
 print("Archive index was not refreshed
");
 }
 else
 {
 print("Archive index was refreshed
");
 }

if (!ArchiveRecalculate("CompanyA.dom\\listname"))
 {

 print("Achive index was not recalculated");
 }
 else
 {
 print("Archive index was recalculated");

 }

Result

Adds a message to the archive then refreshes and recalculates the
archive files.

See also

ArchiveRecalculate, ArchiveRefresh
54 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ArchiveRecalculate

ArchiveRecalculate rebuilds the archive files for the given archive.

ArchiveRecalculate(archive)

Parameters

archive

the name of the archive to be recalculated.

Returns

Nothing

Example

 if (!ArchiveAddMessage("CompanyA.dom\\listname\\archivein\\vvfaaaaa.mbx"))
 {
 print("Failed to add message
");
 }
 else
 {
 print("Message added to archive
");
 }

if (!ArchiveRefresh("CompanyA.dom\\listname"))
 {
 print("Archive index was not refreshed
");
 }
 else
 {
 print("Archive index was refreshed
");
 }

if (!ArchiveRecalculate("CompanyA.dom\\listname"))
 {

 print("Achive index was not recalculated");
 }
 else
 {
 print("Archive index was recalculated");

 }

Result

Adds a message to the archive then refreshes and recalculates the
archive files.

See also

ArchiveAddMessage, ArchiveRefresh
 Gordano Ltd, 1995-2015 55

Functions MML Programmer’s Guide
ArchiveRefresh

ArchiveRefresh refreshes the archive files for the given archive.

ArchiveRefresh(archive)

Parameters

archive

the name of the archive to be refreshed.

Returns

Nothing

Example

 if (!ArchiveAddMessage("CompanyA.dom\\listname\\archivein\\vvfaaaaa.mbx"))
 {
 print("Failed to add message
");
 }
 else
 {
 print("Message added to archive
");
 }

if (!ArchiveRefresh("CompanyA.dom\\listname"))
 {
 print("Archive index was not refreshed
");
 }
 else
 {
 print("Archive index was refreshed
");
 }

if (!ArchiveRecalculate("CompanyA.dom\\listname"))
 {

 print("Achive index was not recalculated");
 }
 else
 {
 print("Archive index was recalculated");

 }

Result

Adds a message to the archive then refreshes and recalculates the
archive files.

See also

ArchiveAddMessage, ArchiveRecalculate
56 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Asc

Asc returns the ASCII value of the first character in a string.

n = Asc(str)

Parameters

Str is a string.

Returns
• n — the ASCII value as an integer. Where str is a number, Asc

returns the ASCII value of its most significant digit.
• 0 — if str is an empty string.

Example

Print (Asc("ABC"));

Result

65

See also

Chr
 Gordano Ltd, 1995-2015 57

Functions MML Programmer’s Guide
AutoConnect

AutoConnect tries to start a dial-up connection.

AutoConnect(RASPhoneBookEntry,RAS2PhoneBookRetry)

Parameters

RASPhoneBookEntry

Name of phone book entry. (Avoid spaces in names as they
can cause problems on some NT systems.)

RAS2PhoneBookRetry

"Custom dialup", "Proxy custom dialup" or an empty string
which means "Do not dial up".

"Custom dialup" reads these global Registry values:

• RASAccName, RASPassword and RASPhoneNumber.

• RASAccName2, RASPassword2 and RASPhoneNumber2.

"Proxy custom dialup" reads these global Registry values:

• ProxyRASAccName, ProxyRASPassword and
ProxyRASPhoneNumber.

• ProxyRASAccName2, ProxyRASPassword2 and
ProxyRASPhoneNumber2.

Returns

TRUE if the connection is made successfully, otherwise FALSE.

Remarks

If a connection is already available, the function uses that. A
connection count is kept so that several services can use the same
connection. You must use AutoDisconnect to close the
connection.

If an application other than GMS established the connection, GMS
still uses it, but it will not disconnect it. At shutdown NTMai/GMS
closes any open connections.

Example

If (Autoconnect("Demon internet","Custom dialup"))
{
 Print ("Connected");
}

Result

Connected
58 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
See also

AutoDisconnect, CollectFromPOP, IsConnected
 Gordano Ltd, 1995-2015 59

Functions MML Programmer’s Guide
AutoDisconnect

AutoDisconnect decrements the connection count and drops the
current connection after the timeout period if the connection count
has fallen to zero and the connection was established by GMS.

AutoDisconnect(timeout)

Parameters

Timeout is the number of 30 second ticks to wait before the
connection is physically dropped.

Returns

TRUE if the disconnection succeeds, otherwise FALSE.

Remarks

The timeout is imposed because:
• HTTP makes lots of short-lived connections.
• The first three minutes of a connection cost most.

Example

This disconnects after two minutes:

if (AutoDisconnect(4))
{
 Print ("Disconnected");
}

See also

AutoConnect, IsConnected
60 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
BitAnd

BitAnd performs a bitwise AND on two integer numbers.

n = BitAnd(int1, int2)

Parameters

Bit

The first integer.

Int

The second integer.

Returns

The AND value as an integer.

Remarks

The least significant bit is bit 0.

Example

Print(BitAnd (12, 9));

Result

8

See also

BitIsSet, BitMaskIsSet, BitReset, BitSet
 Gordano Ltd, 1995-2015 61

Functions MML Programmer’s Guide
BitIsSet

BitIsSet tests whether bit position <bit> of the integer number
<int> is set.

n = BitIsSet(int,bit)

Parameters

Int

The specified integer number.

Bit

The specified bit position within the integer.

Returns

TRUE if the specified bit is set, otherwise FALSE.

Remarks

The least significant bit is bit 0.

Example

This is how you test for a forwarding account:

User = "joe";
Domain = "GMS.dom";

if (BitIsSet(#domain#\#user#\Type,AccountTypeForward))
{
 Print("This is a forward account");
}

Result

This is a forward account

See also

BitAnd, BitSet, BitMaskIsSet, BitReset
62 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
BitMaskIsSet

BitMaskIsSet tests whether all the bits in a mask are set in an
integer number.

n = BitMaskIsSet(int,mask)

Parameters

Int

The specified integer number.

Mask

A bit mask specified as an integer.

Returns

TRUE if all the mask bits are set in the integer, otherwise FALSE.

Remarks

The least significant bit is bit 0.

Example

if (BitMaskIsSet (9, 13))
{
 Print("1 - All bits are set.",
);
}

if (BitMaskIsSet (13, 9))
{
 Print("2 - All bits are set.");
}

Result

1 - All bits are set.

See also

BitAnd, BitIsSet, BitSet, BitReset
 Gordano Ltd, 1995-2015 63

Functions MML Programmer’s Guide
BitReset

BitReset resets bit position <bit> of the number <int> and returns
the result.

n = BitReset(int,bit)

Parameters

Int

The specified integer number.

Bit

The specified bit position within the number.

Returns

The integer with the reset bit.

Remarks

The least significant bit is bit 0.

Example

This example turns off the mailbox bit:

#domain#\#user#\Type = BitReset(#domain#\#user#\Type,AccountTypeMailbox));

See also

BitAnd, BitSet, BitIsSet, BitMaskIsSet, BitSet
64 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
BitSet

BitSet sets bit <bit> of number <int> and returns the result.

n = BitSet(int, bit)

Parameters

Int

The specified integer number.

Bit

The specified bit-position within the number.

Returns

An integer.

Remarks

The least significant bit is bit 0.

Example

This uses BitSet to test the account type:

if (!ExistUser(#domain#\#NewUser#))
{
 if (AddUser(NewUser, Domain, "password"))
 {
 #domain#\#newuser#\Type = AccountTypeMailbox;
 #domain#\#newuser#\Type =
 BitSet(#domain#\#newuser#\Type,AccountTypeForward);
 #domain#\#newuser#\Forward = ForwardEmail;
 }
}

See also

BitAnd, BitIsSet, BitMaskIsSet, BitReset
 Gordano Ltd, 1995-2015 65

Functions MML Programmer’s Guide
Bound

Bound makes sure that the result is between two specified bounds.

n = Bound(value, min, max)

Parameters

Value

The number to use.

Min

The minimum value for the variable.

Max

The maximum value for the variable.

Returns

If value is below "min", the function returns "min". If the value is
above "max", it returns "max".

Example

x = Bound(12,5,8);
Print ("x");

Result

8

See also

AddrInRange
66 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
CheckPassword

CheckPassword checks that the specified variable is the password.
It does not matter if it is encrypted.

CheckPassword(account,uservar,password)

Parameters

Account

The account.

Uservar

The account variable to use. You can use this to check the
various types of list password: joinpassword, leavepassword,
etc.

Password

The number to use.

Returns

FALSE if the account does not exist or the password is wrong,
otherwise TRUE.

Example

if (CheckPassword("companyA.dom\\joe",joinpassword,user-pwd))
{
 Print("Join password OK");
}

 Gordano Ltd, 1995-2015 67

Functions MML Programmer’s Guide
CheckServer

CheckServer resolves the server name and tries to connect to it on
the specified port. Use it to test whether a service is running on the
port.

CheckServer(server,port)

Parameters

Server

The server name.

Port

The port number to use.

Returns

TRUE if the connection succeeds, otherwise FALSE.

Remarks

After connecting to the server, the function disconnects.

Example

if (CheckServer("mail.companyA.dom",25))
{
 Print("Mail is up.");
}

Result

If mail is running on port 25 on the server, you will see:

Mail is up.

See also

ServiceStatus
68 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
CheckServiceAccess

CheckServiceAccess checks to see if the NT service control
manager is accessible.

CheckServiceAccess()

Parameters

None

Returns

TRUE if access is available, otherwise FALSE.

Example

x = checkserviceaccess();
print(x);

Result
1

 Gordano Ltd, 1995-2015 69

Functions MML Programmer’s Guide
CheckTopLevelScript

CheckTopLevelscript returns true if the current script is the top
level entry script.

CheckTopLevelScript()

Parameters

None

Returns

TRUE if the current script is the top level entry script, otherwise
FALSE.

Example

x = checkTopLevelScript();
print(x);

Result
1

See also

KillScript, ListRunningScripts, SetScriptPriority
70 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Chr

Chr returns a string containing the single character whose ASCII
value is the specified integer.

str = Chr(int)

Parameters

Int is an integer number.

Returns

A one character string.

Example

x = Chr(65);
Print ("x");

Result

A

See also

Asc
 Gordano Ltd, 1995-2015 71

Functions MML Programmer’s Guide
CloseMemberDB

CloseMemberDB closes a member database file.

CloseMemberDB(db_handle)

Parameters

Db_handle is the handle of the database to close, previously
opened using OpenMemberDb.

Returns

Nothing.

Remarks

Once this function has been called, the database handle is
destroyed so can no longer be used.

Example

This example opens a member database and prints the member
field of all its records:

mydb = OpenMemberDB("test.com\\testlist",FILE_READ);

if (mydb)
{
 while (mymember = ReadNextMemberRecord(mydb))
 {
 Print("Account: ",mymember\member,"
");
 }

 CloseMemberDB(mydb);
}

See also

GetAllMembers, GetMemberRecord, OpenMemberDb,
ReadNextMemberRecord, SetMemberRecord
72 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
CloseZip

CloseZip closes a Zip file.

CloseZip(handle)

Parameters

Handle is the file handle obtained using OpenZip.

Returns

TRUE if the file is closed successfully, otherwise FALSE.

Remarks

You cannot use MML to do things like extract files from a Zip file.

Example

zip = OpenZip("\\\\Test.zip");
if (zip)
{
 if (!AddZip(zip, "\\\\Timed.txt"))
 {
 Print("Couldn't add to zip");
 }
 CloseZip(zip);
 Print("Opened zip.");
}
else
{
 Print("Failed to open zip");
}

See also

AddZip, OpenZip
 Gordano Ltd, 1995-2015 73

Functions MML Programmer’s Guide
CollectFromPOP

CollectFromPop collects messages from a POP account for local
delivery.

CollectFromPop
(mailserver,port,account,password,deliveryclause,deleteoption,deliv
eryoption,addresslist,defaultaddress,deliveryrule,
onlynewmessages,headerclause,errormsg)

Parameters

Mailserver

The server to collect e-mail from.

Port

The port to connect to. This should be the POP port (110).

Account

The account name.

Password

 The account password.

Deliveryclause

The clause to use if DeliveryRule is set to HeaderClause (see
below).

DeleteOption

The action to take after reading the mail, one of these:
•0 — do nothing.
•1 — delete as download.
•2 — delete only if rule matches.

DeliveryOption

AllAddressees, FirstAddressee or "To".

AddressList

A list of addresses.

DefaultAddress

If no rule matches, deliver to this address.

DeliveryRule

You can mix the DeliveryOption and DeliveryRule, for
example to specify all addresses which match a rule, one of
these:
•"GMSPOP3Domain" — delivery clause is empty.
•"HeaderClause" — delivery clause is the clause to look for

in the message header. This can include wildcards, for
example, “To: *@domain.dom".
74 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
•"EmailAddress" — the space-separated list of addresses
used with a DeliveryOption of AllAddressees or
FirstAddressee (see above).

OnlyNewMessages

Only download messages that have not already been read.
This only works if the POP server supports the top command
and provides "status:read" as the first line.

HeaderClause

The header clause you want the server to add to the
messages. For example "X-FromPOP". If you don’t want a
header to be added use " ".

ErrorMsg

The variable into which the server will put any error message
associated with the download.

Returns

TRUE if the function succeeds, otherwise FALSE.

Remarks

This function assumes that the TCP/IP connection to the mail server
is available.

All e-mail goes through post@SMTP so that GMS Anti-Spam, Virus
Scanner, etc. can be applied to it.

You can deliver e-mail to accounts on other machines too.

Example

The main parameter differences in the two examples are the
following:

Parameter First example Second example

Deliveryclause "To" " "

DeliveryOption "AllAddressees" "To"

AddressList " " "bob joe lou"

DeliveryRule "HeaderClause" " "

This call uses a “To” HeaderClause to deliver to all addresses:

CollectFromPop("mail.companyA.dom",110,"guest","wh1sky",
"To",TRUE,"Alladdressees"," ","postmaster@companyA.dom",
"HeaderClause",FALSE,"X-FromPOP",errorMsg);

This call uses a "To" DeliveryOption to deliver to a list of addresses:

CollectFromPop("mail.CompanyA.dom",110,"guest","wh1sky",
 Gordano Ltd, 1995-2015 75

Functions MML Programmer’s Guide
" ",TRUE, "To","bob lou joe","postmaster@companyA.dom",
"HeaderClause",FALSE,"X-FromPOP",errorMsg)

See also

AutoConnect, AutoDisconnect
76 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ConfiguredLanguages

ConfiguredLanguages lists the short names for supported
languages.

x = ConfiguredLanguages()

Parameters

None

Returns

A space seperated list of short names for supported languages

Example
print(configuredlanguages());

Result
de en-us es es-mx fr it ja ko pl pt-br sv zh-tw

See also

SetSessionLanguage, LanguageName, DefaultLanguage, NLS,
 Gordano Ltd, 1995-2015 77

Functions MML Programmer’s Guide
ConvertCase

ConvertCase converts a string to all Lower or Upper case characters

ConvertCase(str,[true or false])

Parameters

Str

Str is a string

True

converts the string to Lowercase

False

converts the string to Uppercase

Returns

Case converted string

Example
str = "This is a Test";
Quote = Convertcase(str,true);
Print (Quote);

Result
this is a test
78 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ConvertForDisplay

ConvertForDisplay converts an input string into the appropriate
form for display within both HTML and plain text alternative
sections of a multi-part list message.

x = ConvertForDisplay(string)

Parameters

String is the string for conversion into both an HTML statement and
a plain text string.

Returns

Both an HTML statement and a plain text string for inclusion into
the alternative sections of a multi-part message.

Remarks

All special characters are converted to their "&" version in the
HTML portion of the text that is returned. For example, ">" is
used for a ">" sign. In the plain text alternative section they are left
unchanged.

Example

ConvertForDisplay("£100 > £50");

Result

£100 > £50 (for use in the HTML section)
£100 > £50 (for use in the plain text section)

See also

ConvertToHTML
 Gordano Ltd, 1995-2015 79

Functions MML Programmer’s Guide
ConvertToAccount

ConvertToAccount converts a standard e-mail address into a
"domain\user" account name.

user = ConvertToAccount(str[,domain])

Parameters

Str

The e-mail address string.

Domain (optional)

A string specifying the domain.

Returns

The address as "domain\user".

Remarks
• If the optional domain parameter is not specified, the system

uses the domain name for the IP address this connection was
made on.

• This function uses the GMS rules to strip any extraneous
characters from the input.

Example 1

This example shows how the function converts many different
address formats:

Print("Test.dom\\Joe = ",
 ConvertToAccount("Joe","Test.dom"), "
");
Print("Test.dom\\Joe = ",
 ConvertToAccount("Joe@Test.dom","companyB.dom"),"
");
Print("Test.dom\\Joe = ",
 ConvertToAccount("From: <Joe> Joe Egg",Test.dom"),"
");
Print("Test.dom\\Joe = ",ConvertToAccount("Test.dom!Joe",0),"
");

Result
Test.dom\\Joe = Joe@Test.dom
Test.dom\\Joe = Joe@Test.dom
Test.dom\\Joe = Joe@Test.dom
Test.dom\\Joe = Joe@Test.dom
80 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Example 2

This example shows how to use this function on a logon page to
automatically detect a domain if the user does not specify one:

FullUser = ConvertToAccount(User);
if (ExistUser(FullUser))
{
 if(CheckPassword(#FullUser#,password)
 {
 Print("Welcome.
");
 }
 else
 {
 Print("Logon failed. Please try again.
");
 }
}
else
{
 Print("Logon failed. Please try again.
");
}

See also

ConvertToEmailAddress, GetLocalDomain, ConvertToDomain
 Gordano Ltd, 1995-2015 81

Functions MML Programmer’s Guide
ConvertToDomain

ConvertToDomain finds the domain name in a string.

x = ConvertToDomain(account)

Parameters

Account is an account name.

Returns

The domain name.

Example

Print(ConvertToDomain("\"Jo Jones\"<jo@companyA.dom>"),"
");

Result

companyA.dom

See also

ConvertToEmailAddress, GetLocalDomain
82 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ConvertToEmailAddress

ConvertToEmailAddress converts an account name into a
standard e-mail address.

user = ConvertToEmailAddress(account)

Parameters

Account is an account name in any of the permitted account name
forms.

Returns

A standard e-mail address in the form "user@domain".

Remarks

If no domain name is found, it appends the domain name of the
current connection.

Example

ConvertToEmailAddress("companyA.dom\\joe");

Result

joe@companyA.dom

See also

ConvertToAccount, ConvertToDomain
 Gordano Ltd, 1995-2015 83

Functions MML Programmer’s Guide
ConvertToFlatHTML

ConvertToFlatHTML removes executable HTML entries (script,
applet, embed, object) from supplied html

x = ConvertToFlatHTML(html)

Parameters

html

The html to be stripped of executable content.

Returns

Returns html code with executable content removed.

Example

messagetext = ConvertToFlatHTML(CurrentMsgText);

See also

ConvertToHTML
84 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ConvertToHTML

ConvertToHTML converts an input string into an HTML statement.

x = ConvertToHTML(string)

Parameters

String is the string for conversion into an HTML statement.

Returns

An HTML statement.

Remarks

All special characters are converted to their "&" version in the text
that is returned. For example, ">" is used for a ">" sign.

Example

ConvertToHMTL("£100 > £50");

Result

£100 > £50

See also

URLDecode, URLEncode
 Gordano Ltd, 1995-2015 85

Functions MML Programmer’s Guide
ConvertToJava

ConvertToJava converts supplied text to Java (escapes ’"’, ’\’, ’\r’,
’\n’)

x = ConvertToJava(string)

Parameters

String

The string to be converted to Java

Returns

Java.

Example

messagetext = ConvertToJava(messagetext);

86 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ConvertToRealName

ConvertToRealName(string)

Parameters

String

is the string in RFC1522 format for conversion into a
displayable format.

Returns

Converted string.

Remarks

used in header fields for multibyte/foreign names.

Example

address = ConvertToRealName(address);
 Gordano Ltd, 1995-2015 87

Functions MML Programmer’s Guide
ConvertToUser

ConvertToUser converts an MML user to a real user.

x = ConvertToUser(name)

Parameters

Name

is the MML user to be converted.

Returns

Username

Example

toAddress = ConvertToEmailAddress((ConvertToUser(ListEmailAddress) & "-join"),
ConvertToDomain(ListEmailAddress));

Result

listname-join@domain.dom

See also

ConvertToEmailAddress, ConvertToDomain
88 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ConvertToTime

ConvertToTime converts an input string into a standard time
format.

t = ConvertToTime(string)

Parameters

String is a time string.

Returns

The time in hh:mm:ss format.

Example

ConvertToTime("19:00");

Result

19:00:00

See also

DateTimeFormat, Time
 Gordano Ltd, 1995-2015 89

Functions MML Programmer’s Guide
CreateDirectory

CreateDirectory creates a directory.

CreateDirectory(directory[,absolutepath])

Parameters

Directory

The directory to create.

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns

TRUE if the directory is created successfully, otherwise FALSE.

Example

This creates a directory in Joe’s user space:

CreateDirectory("companyA.dom\\joe\\menus");

See also

DelDir

Only a verified account can use this function if the folder location is outside
of the Gordano file structure .
90 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
CreateSetup

CreateSetup creates the file Setup.txt in GMS’s base directory.

CreateSetup(Flag)

Parameters

If Flag is set to FALSE, the function creates the plain file Setup.txt. If
it’s set to TRUE, the function creates a Setup.txt which includes
other configuration files, such as postservers.txt and list help files.

Returns

TRUE if the file is created successfully, otherwise FALSE.

Remarks

You can do two things with the Setup.txt file this creates:
• Save it somewhere in case it's needed (it's essentially a backup).
• E-mail it to support or off site for safe storage.

Example

CreateSetup(TRUE);
Msg = MsgCreate("dean@company.dom","fred@companyA.dom","Setup");
if (msg)
{
 MsgAddFile(msg,"\\\\setup.txt",FILE_BINARY);
 MsgClose(Msg,MSG_SEND);
}

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 91

Functions MML Programmer’s Guide
Date

Date returns the current date in standard format. Use it to create a
date for use elsewhere.

t = Date([year, month, day])

Parameters

If the optional year, month and day parameters are specified, the
function creates a date using these values.

Returns

The formatted date.

Remarks

The time is assumed to be 00:00.00.

Example

Print("The date is " , Date());

Result

The date is 1997-06-24

See also

Time, DateTimeFormat
92 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
DateTimeFormat

DateTimeFormat takes a date structure and prints it in the format
requested.

t = DateTimeFormat(format_string, date)

Parameters

Format_string

One of the following variables:

Date

The date structure.

Remarks

You can use a "\" as an escape character.

Returns

The date string in the specified format.

Example
Print(DateTimeFormat("ddth mmm yyyy hh:mi:ss","1997-02-06 12:02:22"));

Result
6th Feb 1997 12:02:22

See also

Date, Time

String Values Description

yy 0-99 The last two digits of the year.

yyyy 0-9999 The year in full.

mm 1-12 The number of the month.

mmm Jan-Dec The first three letters of the month.

mmmm January-Decem-
ber

The month name in full.

dd 1-31 The day of the month.

th st,nd,rd,th The appropriate letters for the given
day of the month. For the 1st, this is
"st".

dw Mon-Sun The current day of the week.

df Monday-Sunday The current day of the week in full.

hh 00-24 The hours.

mi 00-59 The minutes.

ss 00-59 The seconds.

r Display in RFC format
 Gordano Ltd, 1995-2015 93

Functions MML Programmer’s Guide
DefaultLanguage

DefaultLanguage returns the default system language

x = DefaultLanguage()

Parameters

None

Returns

the short name for the default system language. by default this is
en-us.

Example

print(DefaultLanguage());

Result
en-us
94 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
DefaultListParm

DefaultListParm returns the default value of the specified list
account parameter.

x = DefaultListParm(parameter)

Parameters

Parameter is a list account parameter.

Returns

A string containing the default value.

Example

x = DefaultListParm("maxtoaddresses");
Print ("Maximum To addresses allowed = ","x");

Result

Maximum To addresses allowed = 5
 Gordano Ltd, 1995-2015 95

Functions MML Programmer’s Guide
DelAlias

DelAlias removes an account’s alias.

DelAlias(account,alias_name)

Parameters

Account

The account.

Alias_name

The alias to remove.

Returns

TRUE if the alias is successfully removed, otherwise FALSE.

Example

This removes the alias "Sales-team" from Joe’s aliases:

DelAlias("companyA.dom\\users\\joe","Sales-team");

See also

AddAlias

Only a verified account can use this function.
96 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
DelDir

DelDir deletes a directory.

DelDir(directory[,absolutepath])

Parameters

Directory

The directory to remove.

 Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns

TRUE if the directory is successfully removed, otherwise FALSE.

Example

This deletes a directory from Joe’s user space:

DelDir("c:\users\joe\menus",TRUE);

See also

CreateDir

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 97

Functions MML Programmer’s Guide
DelDomain

Removes a domain from the system.

DelDomain(domain_name)

Parameters

Domain_name is the domain to be removed.

Remarks

It may take up to 30 seconds to before the domain is deleted.

All details of the domain are lost, so to remove a domain cleanly,
use the following calls in this order:
1. DelUserFiles and DelUser for all users.
2. DelDomainFiles.
3. DelDomain (once all files, directories and accounts have gone).

Similarly, do not delete a virtual domain’s base domain without
removing the virtual domain first.

Returns

TRUE if the domain is successfully removed, otherwise FALSE.

Example

DelDomain("companyA.dom");

See also

DelDomainFiles

Only a verified account can use this function.
98 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
DelDomainFiles

DelDomainFiles removes a domain’s files from the system.

DelDomainFiles(domain_name)

Parameters

Domain_name is the domain whose files are to be removed.

Remarks

Use this function before DelDomain. The files removed include
logs, templates ,etc. but not user files.

Returns

TRUE if the domain files are successfully removed, otherwise FALSE.

Example

DelDomainFiles("companyA.dom");
DelDomain("companyA.dom");

See also

DelDir, DelDomain, DelUserFiles

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 99

Functions MML Programmer’s Guide
DeleteMemberRecord

DeleteMemberRecord deletes a member record from the
database.

DeleteMemberRecord(handle)

Parameters

Handle is the handle for the record created by
GetMemberRecord.

Returns

TRUE if the record is successfully removed, otherwise FALSE.

Example

This deletes the first five records from the database:

dbase = OpenMemberDb(companyA.dom\stafflist,FILE_WRITE);
if (dbase)
{
 for (i = 0; i < 5; i = i + 1)

{
 DeleteMemberRecord(dbase);

}
}
CloseMemberDb(dbase);

See also

GetMemberRecord, ReadNextMemberRecord, SetMemberRecord
100 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
DelFile

DelFile deletes a file.

DelFile(filename[,absolutepath])

Parameters

Filename

The name of the file to delete.

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns

TRUE if the file is removed, otherwise FALSE.

Example

if (DelFile(note.txt))
{
 Print("Note.txt deleted");
}

See also

DelUserFiles, DelDomainFiles, ExistFile, FileReplace, FileOpen,
FileClose

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 101

Functions MML Programmer’s Guide
DelSession

DelSession deletes the current session, effectively logging off the
user.

DelSession()

Parameters

None.

Returns

Nothing.

Remarks

If the user was a verified account, they become unverified. All
global variables for the account are lost.

Example

DelSession();

Result

None.

See also

AddSession
102 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
DelTimed

DelTimed removes an event from the schedule list.

DelTimed(event)

Parameters

Event is the name of the event to delete.

Returns

TRUE if the event is removed, otherwise FALSE.

Remarks

If the event is currently in progress, it will not be deleted until it
ends.

Example

AddTimed("event","05-06-99",60,"\timed.mml","0123456", "09:00:00","17:30:00");
{
 Print("Events to run = ",EventNames,"
");
 Print("Start time = ",event\datetime,"
");
 Print("Repeat = ", event\repeat, "seconds","
");
 Print("\timed.mml = ", event\script,"
");
}
DelTimed(event);

See also

AddTimed

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 103

Functions MML Programmer’s Guide
DelUser

DelUser deletes the account from the system.

DelUser(account)

Parameters

Account is the name of the account to delete.

Returns

TRUE if the account is successfully deleted, otherwise FALSE.

Remarks

You must delete the account’s files first using DelUserFiles.

If DelUser succeeds, all information about the account is removed
— to re-create the user, you must create the account again from
scratch.

Example

user = "companyA.dom\\joe";
if (DelUserFiles(user))
{
 if (DelUser(user))
 {
 Print("Removed user ",ConvertToEmailAddress(user));
 }
 else
 {
 Print("Could not delete ",ConvertToEmailAddress(user));
 }
}

Result

Could not delete user joe@companyA.dom
Error result 15 = No such user name.

See also

DelUserFiles

Only a verified account can use this function.
104 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
DelUserFiles

DeleteUserFiles removes an account’s files.

DelUserFiles(account)

Parameters

Account is the name of the account to delete.

Returns

TRUE if the files are successfully deleted, otherwise FALSE.

Remarks

Before you delete an account, use this function to delete its files.

Example

user = "companyA.dom\\joe";
if (DelUserFiles(user))
{
 if (DelUser(user))
 {
 Print("Removed user ",ConvertToEmailAddress(user));
 }
 else
 {
 Print("Could not delete ",ConvertToEmailAddress(user));
 }
}

See also

DeleteUser

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 105

Functions MML Programmer’s Guide
DiffDate

DiffDate gives the difference between two date and time
variables.

n = DiffDate(date_1,date_2)

Parameters

Date_1

The first date.

Date_2

The second date.

Returns

The difference in seconds.

Remarks

You can use the Date function to specify the dates. Specify the
most recent date/time first.

Example

Print(DiffDate("1997-06-24 08:00:00","1997-08-21 07:00:00"));
Print("
");
Print(DiffDate(Date(),Date(1999,12,31)),"
");

Result

5007600
17753712

See also

Date, DateTimeFormat
106 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
DirSize

DirSize returns the size and number of files in each of the specified
directory’s subdirectories.

str = DirSize(dir[,absolutepath])

Parameters

Dir

The directory to return size information for.

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns

A string listing the subdirectory names, file sizes and no of files in
the directory. The subdirectory, size and file count entries are
separated by a semicolon. The last two semi-colon seperated
entries are the size and number of files for the base directory
specified in DirSize().

Example

Print(DirSize("companyA.dom\\\\"));

Result

\BadMes;0;0 \MesLog;0;0 \Users\List;4543;1 \Users\PostMaster;0;0 \Users;4543;1 ;4579;2
 Gordano Ltd, 1995-2015 107

Functions MML Programmer’s Guide
EncryptPassword

EncryptPassword encrypts a password

str = EncryptPassword(password)

Parameters

Password is the password to encrypt.

Returns

The password as an encrypted string.

Example

code_pwd = EncryptPassword(pwd);
Print (code_pwd);

Result

dsjfg9803skj

See also

VerifyUser
108 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
EnumRasEntries

EnumRasEntries lists RAS entries from your phone book in URL-
encoded form.

str = EnumRasEntries()

Parameters

None.

Returns

A space-separated list of phone book entries, each URL-encoded.

Remarks

RAS is the Remote Access Service.

Example

Print(EnumRasEntries());

Result

Demon+Internet INS+Net+-+ISDN INS+Net

See also

AutoConnect
 Gordano Ltd, 1995-2015 109

Functions MML Programmer’s Guide
ExistDomain

ExistDomain checks to see if the domain specified exists on this
server. That is, it searches for it in the Registry.

ExistDomain(domain)

Parameters

Domain is the name of the domain to look for.

Returns

TRUE if the domain exists, otherwise FALSE.

Example

This uses ExistDomain to check that the domain exists before
trying to delete it:

dom = "companyA.dom";
if (ExistDomain(dom))
{
 DelDomainFiles(dom);
 DelDomain(dom);
}

See also

AddDomain, ExistUser
110 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ExistFile

ExistFile tests whether a file exists.

ExistFile(filename[,absolutepath])

Parameters

Filename

 The name of the file to look for.

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns

TRUE if the file exists, otherwise FALSE.

Example

This uses ExistFile to check that a file exists before trying to delete
it:

textfile = "companyA.dom";
if (ExistFile(textfile))
{
 DelFile(textfile);
}

See also

ExistDomain
 Gordano Ltd, 1995-2015 111

Functions MML Programmer’s Guide
ExistUser

ExistUser tests whether an account exists, using the same routines
as GMS to try to resolve its name.

ExistUser(account [,domain])

Parameters

Account

The user name in standard form. That is, separated by "@",
"\" or "!".

Domain (optional)

The domain name to add to the account name if the
domain name is not specified. If the domain name is not
specified, it uses the domain name associated with the
connection.

Returns

TRUE if the account is on this system, FALSE if the function could
not interpret the address or the account does not exist.

Example

if (!ExistUser(domain & "\\" & newuser))
{

if (AddUser(NewUser,Domain,"password"))
{

#domain#\#newuser#\Type =
BitSet(#domain#\#newuser#\Type,AccountTypeMailbox);

Print ("Account created");
}

}

else

{

Print ("Account already exists");

}

See also

AddUser, DelUser, BitSet
112 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ExistVar

ExistVar checks through all known variables to see if the supplied
variable name exists for this session.

ExistVar(varname)

Parameters

Varname is the name of the variable to look for.

Returns

TRUE if a variable with the specified name exists, otherwise FALSE.

Remarks

All variable types are checked — system, global, connection,
constants etc.

Example

if (ExistVar("LOG_STATS"))
{
 Print("Log stats exist");
}

 Gordano Ltd, 1995-2015 113

Functions MML Programmer’s Guide
FileClose

FileClose closes the file, writes out all buffers and releases all
resources associated with the file handle.

FileClose(handle)

Parameters

Handle is the file handle created by FileOpen.

Returns

TRUE if the file closed successfully, FALSE if the file has already been
closed or the close failed.

If the handle supplied is not a file handle, the script interpreter
reports an error.

Remarks

If an error occurs during a script and file handles are open, they are
automatically closed.

Example

file = FileOpen(filename);
if (file)
{

while (!FileEof(file))
{

 Print(FileReadLine(file), "
\r\n");
}

}
FileClose(file);

See also

FileOpen, FileReadLine, FileWriteLine, FolderOpen, DelFile
114 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FileCopy

FileCopy Copies a file from one location to another.

FileCopy(from,to[,overwrite[,absolute]])

Parameters

from

location and filename of file to be copied

to

location and filename the file is to be copied to

overwrite

if false the copy will fail if the file specified in "to" already
exists. By default oerwrite is true.

absolute

If set to true and the user is verified fully specified paths can
be used.

Example

if (!FileCopy("\\\\setup.txt", "D:\backup\setup.txt", TRUE, TRUE))
 {
 WarningMsg = "Couldn't save setup.txt file to " & destfile;
 }
 Gordano Ltd, 1995-2015 115

Functions MML Programmer’s Guide
FileEOF

FileEOF checks whether the end of a file opened with read access
has been reached.

tf = FileEOF(handle)

Parameters

Handle is the file handle created using FileOpen.

Returns

TRUE if the end of the file has been reached, otherwise FALSE.

Example

file = FileOpen(filename);
if (file)
{

while (!FileEof(file))
{

 Print(FileReadLine(file),"
\r\n");
}

}
FileClose(file);

See also

FileReadLine, FileWriteLine
116 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FileIsBinary

FileIsBinary determines whether a file is binary (contains nulls or
chars > 127)

FileIsBinary(filename)

Parameters

filename

the file to be checked

Returns

True if the file is binary else false.

Example

if fileisbinary("\\\\setup.txt")
 {
 WarningMsg = "File is Binary";
 }
 Gordano Ltd, 1995-2015 117

Functions MML Programmer’s Guide
Filemd5

Filemd5 returns a string representing the MD5 digest of the
specified file.

Filemd5(filename[,allowabsolute])

Parameters

filename

the file to be checked

allowabsolute

if set to true allows a verified user to specify an absolute
path to the filename.

Returns

a string representing the MD5 digest of the specified file

Example
x = filemd5("CompanyA.dom\\joe\\attachments\\file.txt");
print(x);

Result
7a81ffb7c7670cda4eeb068d57ff629b

See Also

Md5Str
118 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FileOpen

FileOpen opens a file.

x = FileOpen(filename,type[,absolutepath])

Parameters

Filename

The file to open, in the form "domain\user\filename".

Type

The operation to perform on the file: FILE_READ,
FILE_WRITE or FILE_APPEND.

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns
• FALSE — failed to open the file as requested, for example due

to a sharing violation.
• X — the file handle to be used in other file operations.

Remarks

The function Resolve may be useful in creating a filename. Once
the file handle has been opened, the variable id/filename is
available. This contains the name of the file that is currently being
accessed.

Example
filename = #dir#\plan;
file = FileOpen(Resolve("#dir#\\#filename#"),FILE_READ);
if (file)
{
 while (!FileEof(file))
 {
 Print(FileReadLine(file),"
\r\n");
 }
 FileClose(file);
}

Result

The file is opened.

See also

FileClose, FileEOF, FileReadLine, FileWriteLine, Resolve

Only a verified account can use this function for writing and with absolute
file names.
 Gordano Ltd, 1995-2015 119

Functions MML Programmer’s Guide
FileReadLine

FileReadLine reads a line from a file opened for read operations
and returns the whole line (without its CRLF).

str = FileReadLine(handle)

Parameters

Handle is the file handle returned by FileOpen.

Returns

If End-of-File is found, an empty string is returned.

Remarks

Checking for an empty string is not enough to determine whether
the end of a file has been reached.

Example

This example prints all the lines of a file:

while (!FileEof(filehandle))
 {
 line = FileReadLine(filehandle);
 Print(line);
 }
FileClose(filehandle);

See also

FileClose, FileEOF, FileReadLine, FileWriteLine
120 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FileReplace

FileReplace replaces one file with another.

FileReplace(file_to_go,replacement[,absolutepath])

Parameters

File_to_go

The file that's to be replaced.

Replacement

The file that will replace file_to_go.

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns

Nothing.

Example

This replaces the file timed.txt with its backup file timed.bak:

FileReplace("\\\\timed.txt","\\\\timed.bak");

See also

DelFile

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 121

Functions MML Programmer’s Guide
FileSize

FileSize returns the size of specified file

FileSize(filename[,absolutepath])

Parameters

filename

The file to return the size of.

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns

The size of the specified file in bytes. Returns 0 on error.

Example
x = FileSize("jtest.dom\\j\\inbox.mbx");
print(x);

See also

FileOpen, FileClose
122 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FileVscan

FileVscan checks a file for viruses.

filevscan(filename,result[,absolutepath])

Parameters

Filename

The file that's to be scanned.

Result

String to return if virus is found.

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Returns

True if the scan is performed, and result is set true if the file
contains a virus.

Example

if (!FileVScan("C:\file.exe",infected,true))
 {
 WarningMsg = "File was not scanned";
 }
 elseif (infected)
 {
 WarningMsg = "Virus found in file";
 }

A valid virus scanning package needs to be installed and configured.
 Gordano Ltd, 1995-2015 123

Functions MML Programmer’s Guide
FileWriteLine

FileWriteLine writes one or more lines to a file, automatically
terminating each with a CRLF.

FileWriteLine(handle,string)

Parameters

Handle

The file handle returned by FileOpen.

String

The line to write to the file.

Returns

This returns an error if the file was opened read-only.

Remarks

If string has multiple lines the function writes more than one line to
the file. It terminates these with CRLFs as required.

Example

This example writes 20 lines to a file:

filename = #dir#\plan;
file = FileOpen(Resolve("#dir#\\#filename#"),FILE_WRITE);
if (file)
{
 for (i = 0; i < 20; i = i + 1)
 {
 FileWriteLine(file,"
\r\n");
 }
 FileClose(file);
}

See also

FileClose, FileEOF, FileReadLine

Only a verified account can use this function.
124 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FilterDomainsOfType

FilterDomainsOfType selects domains of the specified type

str = FilterDomainsOfType(string,mask)

Parameters

String

A space-separated list of domains.

Mask

A mask of domain types. You can specify a single type using
DomainTypeFull, DomainTypePOP, DomainTypeRobot or
DomainTypeVirtual.

Returns

A space-separated list of all the domains of the given type.

Example

domains = FilterDomainsOfType("\\domain names",DomainTypeFull);
Print(domains);

Result

Fulldomain1,Fulldomain2

See also

FilterUsersOfType
 Gordano Ltd, 1995-2015 125

Functions MML Programmer’s Guide
FilterMsg

FilterMsg searches a message for any of a number of strings.

str = FilterMsg(msg,"string1","string2",.....)

Parameters

Msg

The handle produced using MsgCreate or MsgCopy.

Mask

A comma-separated sequence of up to 63 strings.

Returns

For each filter, a count of how many occurrences were found.

Remarks

The strings must not contain wildcards.

Example

In this example Fred appears in the message five times and Joe
eight times. The name Lou is not in the message:

msg = MsgCopy(msg_4);
FilterMsg(msg,"Fred","Joe","Lou");

Result

5 8 0

See also

WildcardFilterMsg
126 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FilterUsersOfType

FilterUsersOfType selects accounts of the specified type.

str = FilterUsersOfType(userlist,attribute,bitvar,seperator)

Parameters

Userlist

A space-separated list of accounts.

Attribute

The Registry variable to search for. For example, you might
search for accounts with AccessRights set to domain
administrator. See the GMS Reference Guide for details of
Registry variables.

Bitvar

Either a bit position or the name of the variable, for example
the constant ACCESS_RIGHT_SYSTEM.

Seperator

The seperator to be used between each user returned.

Returns

A list of accounts.

Example

This example returns all accounts in UserAccessList who have
domain administrator rights:

x = FilterUsersOfType(UserAccessList(), "AccessRights", ACCESS_RIGHT_SYSTEM, ":");
Print(x);

Result

Domain-admin1:Administrator

See also

FilterDomainsOfType
 Gordano Ltd, 1995-2015 127

Functions MML Programmer’s Guide
FindFiles

FindFiles searches for the named files or directories.

str = FindFiles(filenames[,timestamp[,absolutepath[,filetype]]])

Parameters

Filenames

A space-separated list of file names. This can include
wildcards.

Timestamp (optional)

If set to TRUE, this retruns the timestamp for the files

Absolutepath (optional)

If set to TRUE, this lets a verified account use absolute paths.

Filetype (optional)

If set to TRUE, this returns a flag denoting a file or directory.

Returns

A space-separated list of filenames. Each entry shows:

 Name;size in bytes;date modified or created;file or directory.

Remarks

If a directory appears in the list, its subdirectories are searched too.
However, the subdirectory structure is not output. Directory entries
are denoted by "d" when the filetype varibale is set.

Example

files = findfiles("c:\\gordano\\company.dom\\users\\user1*.mbx",1,1,1);

Print(files);

Result

InBox.mbx;29021;2003-05-16;20:11:45;f

See also

ExistFile, FolderExist
128 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FolderAppendMsg

FolderAppendMsg appends a message to a folder (mailbox).

x = FolderAppendMsg(foldername,msg)

Parameters

Foldername

The folder name.

Msg

The message to add.

Returns

The UDIL of the message (the id taken from its header).

Remarks

You must specify the folder name fully, as in the following example.

Example

This appends a message (n) from Lou’s mailbox to Joe’s mailbox:

folder1 = FolderOpen("companyA.dom\\lou\\inbox");
msg = MsgCopy(folder1\n);

foldername = "companyA.dom\\joe\\inbox"
folder2 = FolderOpen(foldername);
FolderAppendMsg(foldername,msg);

folderclose(folder1,FALSE);
folderclose(folder2,TRUE);

See also

FolderClose, FolderList, FolderGetMessageCount,
FolderMsgCheckStatus, FolderMsgSetStatus, FolderOpen,
FolderExist, FolderGetNewMessageCount
 Gordano Ltd, 1995-2015 129

Functions MML Programmer’s Guide
FolderClose

FolderClose closes a folder (mailbox).

FolderClose(handle,save)

Parameters

Handle

The folder handle set by FolderOpen.

Save

If Save is TRUE, save any changes made to the folder.

Returns

Nothing.

Example

This appends a message (n) from Lou’s mailbox to Joe’s mailbox. It
uses a Save value of TRUE for the folder which has been changed:

folder1 = FolderOpen("companyA.dom\\lou\\inbox");
msg = MsgCopy(folder1\n);

folder2 = FolderOpen("companyA.dom\\joe\\inbox");
FolderAppendMsg(folder2,msg);

folderclose(folder1,FALSE);
folderclose(folder2,TRUE);

See also

FolderAppendMsg, FolderDelete, FolderList,
FolderMsgCheckStatus, FolderOpen, FolderExist
130 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FolderDelete

FolderDelete deletes a folder (mailbox).

FolderDelete(name)

Parameters

Name is the name of the folder, excluding its ".mbx" extension.

Returns

TRUE if the folder is deleted successfully, otherwise FALSE.

Remarks

The .mbx file and .idx file are deleted

Example

FolderDelete("companyA.dom\\joe\\inbox");

See also

FolderAppendMsg, FolderClose, FolderList,
FolderGetMessageCount, FolderMsgCheckStatus, FolderOpen,
FolderExist, FolderGetNewMessageCount
 Gordano Ltd, 1995-2015 131

Functions MML Programmer’s Guide
FolderExist

FolderExist checks to see it the specified folder exists.

FolderExist(folder)

Parameters

Folder

 is the name of the folder, excluding its ".mbx" extension.

Returns

TRUE if the folder exists, otherwise FALSE.

Example

if (!FolderExist("companyA.dom\\joe\\inbox"))
 {
 print("Folder inbox does not exist");
 }

See also

FolderAppendMsg, FolderClose, FolderList,
FolderGetMessageCount, FolderMsgCheckStatus, FolderOpen,
FolderGetNewMessageCount
132 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FolderFlush

FolderFlush removes messages marked for deletion from a folder.

FolderFlush(folder)

Parameters

Folder

 is the name of the folder, excluding its ".mbx" extension.

Returns

False if the folder does not exist otherwise True.

Example

FolderFlush("companyA.dom\\joe\\inbox"))

See also

FolderAppendMsg, FolderClose, FolderList,
FolderGetMessageCount, FolderMsgCheckStatus, FolderOpen,
FolderGetNewMessageCount
 Gordano Ltd, 1995-2015 133

Functions MML Programmer’s Guide
FolderGetMessageCount

FolderGetMessageCount counts the number of messages in a
folder (mailbox).

n = FolderGetMessageCount(folder)

Parameters

Folder is the name of the folder, excluding its ".mbx" extension.

Returns

The number of messages or 0 (zero) if the mailbox does not exist.

Example

n = FolderGetMessageCount("companyA.dom\\joe\\inbox");
if n > 128
{
 Print("folder has reached message limit");
}

See also

FolderAppendMsg, FolderList, FolderMsgCheckStatus,
FolderMsgSetStatus,
FolderMsgUnsetStatus,FolderGetNewMessageCount
134 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FolderGetNewMessageCount

FolderGetNewMessageCount counts the number of new
messages in a folder (mailbox).

n = FolderGetNewMessageCount(folder)

Parameters

Folder

is the name of the folder, excluding its ".mbx" extension.

Returns

The number of messages or 0 (zero) if the mailbox does not exist or
there are no new messages.

Example

n = FolderGetNewMessageCount("companyA.dom\\joe\\inbox");
if n > 0
{
 Print("You have ",n," new messages");
}

See also

FolderAppendMsg, FolderList, FolderMsgCheckStatus,
FolderMsgSetStatus, FolderMsgUnsetStatus,
FolderGetMessageCount
 Gordano Ltd, 1995-2015 135

Functions MML Programmer’s Guide
FolderList

FolderList lists folders (mailboxes).

FolderList(folder_wildcard)

Parameters

Folder_wildcard is a wildcarded string of folder names.

Returns

A comma-separated list of folders (files with .mbx extension) and
directories . Directories have "/ " following their name.

Example

FolderList("companyA.dom\\joe");

Result
AddressBooks/,Drafts,InBox,Sent Items,Sent,subscribed/,templates,Trash

See also

FolderAppendMsg, FolderClose, FolderDelete,
FolderMsgCheckStatus, FolderMsgSetStatus, FolderOpen
136 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FolderModified

FolderModified lists folders (mailboxes).

FolderModified(folder)

Parameters

Folder

is the name of the folder, excluding its ".mbx" extension.

Returns

The modified time (as a date variable) for the specified folder.

Example

FolderModified("companyA.dom\\joe\\inbox");

Result

2001-04-19 08:44:10

See also

FolderAppendMsg, FolderClose, FolderDelete,
FolderMsgCheckStatus, FolderMsgSetStatus, FolderOpen
 Gordano Ltd, 1995-2015 137

Functions MML Programmer’s Guide
FolderMsgCheckStatus

FolderMsgCheckStatus checks whether the status of the
message is as specified.

FolderMsgCheckStatus(handle,msg,status)

Parameters

Handle

The folder handle.

Msg

The number of the message in the mailbox.

Status

The status to check for. This is one of the "FOLDER_MSG_"
constants listed in “Constants” on page 297.

Returns

There are two cases:
• If Status is FOLDER_MSG_ADVERT_POS,

FOLDER_MSG_ADVERT_COUNT or
FOLDER_MSG_ADVERT_MAX, the function returns the value of
that status.

• If Status is anything else, the function returns TRUE/FALSE.

Example

folder = FolderOpen("companyA.dom\\#user#\\inbox");
count = FolderMsgCheckStatus(folder,4,FOLDER_MSG_ADVERT_COUNT);

Print("Advert total is ",count," adverts.");

Result

Advert total is 6 adverts.

See also

FolderList, FolderGetMessageCount, FolderMsgSetStatus,
FolderMsgUnsetStatus
138 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FolderMsgSetStatus

FolderMsgSetStatus gives a message the specified status.

FolderMsgSetStatus(handle,msg,status[,value])

Parameters

Handle

The folder handle.

Msg

The number of the message in the mailbox.

Status

The status to give the message, one of the
"FOLDER_MSG_" constants listed in “Constants” on
page 297.

Value

If Status is FOLDER_MSG_ADVERT_POS,
FOLDER_MSG_ADVERT_COUNT or
FOLDER_MSG_ADVERT_MAX, this becomes its value.

Returns

Nothing.

Example

This sets the status of the fourth message in the folder to "posted":

folder = FolderOpen("companyA.dom\\joe\\inbox");
FolderMsgSetStatus(folder,4,FOLDER_MSG_POSTED);

See also

FolderAppendMsg, FolderGetMessageCount,
FolderMsgCheckStatus, FolderMsgUnsetStatus
 Gordano Ltd, 1995-2015 139

Functions MML Programmer’s Guide
FolderMsgUnsetStatus

FolderMsgUnsetStatus removes the specified status value.

FolderMsgUnsetStatus(handle,msg,status)

Parameters

Handle

The folder handle.

Msg

The number of the message in the mailbox.

Status

The status to remove from the message. This is one of the
"FOLDER_MSG_" constants listed in “Constants” on
page 297.

Returns

Nothing.

Example

This removes the "posted" status from the fourth message in the
folder:

folder = FolderOpen("companyA.dom\\joe\\inbox");
FolderMsgUnsetStatus(folder,4,FOLDER_MSG_POSTED);

See also

FolderAppendMsg, FolderGetMessageCount,
FolderMsgCheckStatus, FolderMsgSetStatus
140 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
FolderOpen

FolderOpen opens the folder (mailbox) for use by other functions.

x = FolderOpen(name)

Parameters

The name of the folder to open.

Returns

If the folder is opened successfully, it returns a handle for use by
other calls. If it fails it returns FALSE.

Remarks

If the folder does not exist, the function creates it.

Example

folder = FolderOpen("companyA.dom\\joe\\inbox");
{
 if(FolderMsgSetStatus(folder,4,FOLDER_MSG_POSTED))
 {
 Print("The message has been posted");
 }
}

See also

FolderClose, FolderDelete, FolderList, FolderGetMessageCount,
FolderMsgCheckStatus
 Gordano Ltd, 1995-2015 141

Functions MML Programmer’s Guide
FolderRename

FolderRename renames a folder.

FolderRename(original,replacement)

Parameters

original

The current name and location of the folder

replacement

The name the folder is to be changed to.

Returns

True if the rename is successful else it returns false.

Example

FolderRename("CompanyA.dom\\joe\\trash","litter")

See also

FolderClose, FolderDelete, FolderList, FolderGetMessageCount,
FolderMsgCheckStatus, FolderGetNewMessageCount
142 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetAllMembers

GetAllMembers produces a list of list members.

str = GetAllMembers(format_string, account[,type])

Parameters

Format_string

Defines information required on each member, using a "%"
to indicate the field to be completed. The case-sensitive
fields are:

To specify a user-defined field, type "$" followed by its
name.

Field Meaning

%a Acknowledge

%A AcceptCommand

%b NumBadMessages

%c DateConfirmSent

%d Domain

%f ForDays

%g DigestType

%h HelpSentTime

%i DigestSet

%I DigestTypeSet

%J DateJoined

%j TimeJoined

%L DateLeft

%l TimeLeft

%m DateToCommandModerator

%n Name (userid)

%p MyPassword

%r LeftReason

%s Show

%S ShowSet

%t Type

%T String version of Type

%u Suspended

%U UDIL

%X DateExpiry

%x TimeExpiry
 Gordano Ltd, 1995-2015 143

Functions MML Programmer’s Guide
To mix text with a user-defined field, type "$" followed by
its name between "{" and "}" brackets. You can type any
other text you want on either side of the brackets (but after
the "$"). The example below shows how to do this.

Account

The list account.

Type (optional)

The account type, as listed below. If no type is specified, the
call returns all accounts.

Returns

A string of list members in the required format.

Remarks

This function automatically opens the database, obtains the results
then closes the database. It is easier to use because it opens and
closes the database for you.

To get more than one record using this function, get them in alphabetical
order. The function cannot "rewind" back up the alphabet.

Example

colour = blue;
Print(GetAllMembers("%n@%d
 ","zak.dom\\list"));
Print(GetAllMembers("%n $colour
","zak.dom\\list"));
Print(GetAllMembers("$old {colour} eyes
","zak.dom\\list"));

Result

joe@companyA.dom
 david@domain.dom

joe blue

old blue eyes

Type Lists

MEMBER_TYPE_MEMBER All current members.

MEMBER_TYPE_OLD Members who’ve left.

MEMBER_TYPE_BANNED Banned members.

MEMBER_TYPE_BEING_MODERATED Being moderated.

MEMBER_TYPE_CONFIRM Awaiting confirma-
tion.

MEMBER_TYPE_JOIN_EXPIRED Expired members.

MEMBER_TYPE_DELETE Deleted members.

MEMBER_TYPE_ALL All members
144 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
See also

OpenMemberDb, GetMembeRecord, MemberFormat
 Gordano Ltd, 1995-2015 145

Functions MML Programmer’s Guide
GetConnectionDomain

GetConnectionDomain returns the local domain of the
connection on the server.

str = GetConnectionDomain()

Parameters

None.

Returns

the local domain of the connection on the server

Example

x = GetConnectionDomain();
print(x);

Result

companyA.dom

See also

 GetLocalServerAddress, GetConnectionVariables
146 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetConnectionVariables

GetConnectionVariables lists a connection’s parameters.

str = GetConnectionVariables()

Parameters

None.

Returns

A space-separated list of parameters associated with the
connection, as shown in a URL.

Example

GetConnectionVariables();

Result

http_accept http_accept_encoding http_accept_language http_connection http_cookie
http_host http_user_agent local_hostname remote_hostname request_script_name
script_length script_name server_name server_port server_protocol server_software

See also

 GetLocalServerAddress, GetConnectionDomain
 Gordano Ltd, 1995-2015 147

Functions MML Programmer’s Guide
GetHostedIps

GetHostedIps gets the IP addresses of all network cards on the
server.

str = GetHostedIps()

Parameters

None.

Returns

A space-separated list of IP addresses.

Example

Print(GetHostedIps());

Result

192.54.12.78 192.54.12.84 192.54.12.112

See also

GetLocalIps
148 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetHostname

GetHostname performs a reverse lookup on the address specified.

str = GetHostname(IP_address)

Parameters

IP_address is the IP address to look up.

Returns

Name of the host.

Remarks

This is the opposite of GetIPAddress.

Example

Print (Gethostname("194.205.1.152"));

Result

mail.companyA.dom

See also

GetIPAddress, GetMXRecord
 Gordano Ltd, 1995-2015 149

Functions MML Programmer’s Guide
GetHTTPCookie

GetHTTPCookie("GordanoSearchString");

Parameters

GordanoSearchString

The identifying string used when the cookie was set using
SetHTTPCookie.

Remarks

Cookie needs to have been set on the client machine using
SetHTTPCookie otherwise nothing will be returned.

Returns

Any cookie on the client machine with a matching
GordanoSearchString. Specifically the content of the "data"
parameter as set by SetHTTPCookie.

Example

signoninfo = GetHTTPCookie("GordanoSignon");

See also

SetHTTPCookie
150 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetHTTPPage

GetHTTPPage gets the HTTP page specified.

GetHTTPpage(URL[,filename[,contenttype[absolutepath]]]);

Parameters

URL

The HTTP page to be retrieved.

filename(optional)

filename to save the page to.

contenttype(optional)

specifies the name of a variable that will be set to the data
ContentType

absolutepath(optional)

if set to true allows a verified user to specify an absolute
path for filename.

Returns

The requested HTTP page

Example
URL = "http://www.CompanyA.dom/logon.htm?Logon=Y"
if (ExistVar("password"))
 {
 URL = URL & "&password=" & URLEncode(Trim(password));
 }
if (ExistVar("username"))
 {
 URL = URL & "&username=" & URLEncode(Trim(username));
 }
print(gethttppage(url));

Result

The page http://www.companyA.dom/
logon.htm?Logon=Y&password=ae^$&q&username=jyei^e% is
displayed in the browser window.

 Gordano Ltd, 1995-2015 151

Functions MML Programmer’s Guide
GetIPAddress

GetIPAddress performs a lookup on the given host and returns its
IP address.

addr = GetIPAddress(hostname)

Parameters

Hostname is the name of the host whose A Name or C Name
record is to be looked for.

Returns

The IP address of the host.

Remarks

This is the opposite of GetHostname.

Example

Print(GetIPAddress("mail.companyA.dom"));

Result

194.205.1.152

See also

GetHostname, GetLocalDomain, GetMXRecord
152 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetLoadsharingServer

GetLoadsharingServer shows which server in a load sharing array
handles the account.

addr = GetLoadsharingServer(account)

Parameters

Account is the account whose server you want.

Returns

The IP address of the server in the load sharing array which handles
the account.

Example

server = GetLoadsharingServer(dean@companyA.dom);
Print(server);

Result

server1

See also

GetLoadsharingServerList
 Gordano Ltd, 1995-2015 153

Functions MML Programmer’s Guide
GetLoadsharingServerList

GetLoadsharingServerList lists the servers in the load sharing
array.

str = GetLoadsharingServer(domain)

Parameters

Domain is the domain whose servers you want to list .

Returns

A space-separated list of the load sharing servers in the domain.

Example

servers = GetLoadsharingServer(dean@companyA.dom);
Print(servers);

Result

server1 server2 mainserver

See also

GetLoadsharingServer
154 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetLocalDomain

GetLocalDomain returns the domain name associated with the IP
address.

str = GetLocalDomain(IP_address)

Parameters

The single parameter is the IP address.

Returns

The name of the local domain which matches the the IP address, or
an empty string if no domain does match.

Example

dom = GetLocalDomain(192.54.112.48);
Print(dom);

Result

CompanyA.dom

See also

GetIPAddress
 Gordano Ltd, 1995-2015 155

Functions MML Programmer’s Guide
GetLocalIps

GetLocalIps returns the IP addresses which are local to this
network.

str = GetLocalIps()

Parameters

None.

Returns

A list of the IP addresses in wildcard format.

Example

Print(GetLocalIps());

Result

192.54.30.66 192.54.32.*

See also

GetHostedIps
156 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetLocalAddr

GetLocalAddr returns the IP address which the user’s Web
browser has connected to the server on.

addr = GetLocalAddr()

Parameters

None.

Returns

The IP address on which the user’s Web browser connected to the
server.

Example

Print(GetLocalAddr());

Result

192.54.30.44

See also

GetHostedIps, GetLocalIps
 Gordano Ltd, 1995-2015 157

Functions MML Programmer’s Guide
GetLogonUser

GetLogonUser returns the session’s account name.

user = GetLogonUser()

Parameters

None.

Returns

One of the following:
• The session’s account in the form "domain\user". This is not

necessarily verified.
• An empty string if the session has been created but no user has

logged on.

Example

Print(GetLogonUser());

Result

companyA.dom\fred

See also

GetConnectionVariables
158 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetMailboxName

GetMailboxName returns the account’s default mailbox (folder)
name.

x = GetMailboxName(account)

Parameters

Account is the account name.

Returns

The mailbox name minus its ".mbx" extension.

Example

Print(GetMailboxName("companyA.dom\\joe"));

Result

inbox

See also

FolderList
 Gordano Ltd, 1995-2015 159

Functions MML Programmer’s Guide
GetMaxThreads

GetMaxThreads returns the maximum number of threads
allowed.

x = GetMaxThreads()

Parameters

None.

Returns

The maximum number of threads allowed for any service.

Example

Print(GetMaxthreads());

Result
160 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetMemberRecord

GetMemberRecord opens a member record. You can then change
its variables and write it back to the database.

mhandle = GetMemberRecord(db_handle,member_name)

Parameters

Db_handle

The handle created using OpenMemberDb.

Member_name

The member to find, given in standard account format.

Returns

Mhandle, the handle of the member’s record, with these attributes:

Variable Meaning

Member The address in account format.

Type The "Type" bitmap; see the GMS Reference Guide.

Digest The current effective digest setting, TRUE or FALSE.

digest_set Digests set by this member (not list default) TRUE or FALSE.

digest_type Digest format — "Off", "Text", "Index" or "MIME".

digest_type_set Digest type set by this member (not list default) TRUE or FALSE

Show Show originating address in posts from this user TRUE or
FALSE

show_set "Show" set by this member (not list default) TRUE or FALSE.

Suspended Member suspended TRUE or FALSE.

Ack Acknowledge posts from this user TRUE or FALSE.

AcceptCommand Command awaiting user confirmation.

DateConfirmSent If this list required members to confirm their membership, this
will contain the date that the confirmation request was sent to
the user.

DateJoined Date that the person joined the list. If the join has not taken
place yet, then the date that the request was received.

NumBadMsgs Number of returned messages for member

ForDays If defined, the number of days before the person will auto-
matically be removed from the list.

DateLeft Date the user was removed/left the list.

LeftReason Reason why the user was removed/left the list.

HelpSentTime Time last help sent to member.

MyPassword Password user must use to modify their list settings.

SuspendDays If defined, the number of days to suspend posting of messages
to the member.
 Gordano Ltd, 1995-2015 161

Functions MML Programmer’s Guide
If you specify a variable which does not exist for the member, an
empty string is returned. Assigning this creates the variable for the
member and gives it the value.

Remarks

If the member does not exist, this function creates a blank record
for them. In this case, SetMemberRecord must be called to save
any changes to the member’s record, assuming that the database
was opened in read/write mode.

Example

dbase = OpenMemberDb(companyA.dom\stafflist,FILE_WRITE);
if (dbase)
{
 mem = GetMemberRecord(dbase,companyA.dom\joe);
 SetMemberRecord(dbase,mem);
}
CloseMemberDb(dbase);

See also

CloseMemberDb, GetAllMembers, OpenMemberDb,
ReadNextMemberRecord, SetMemberRecord

Name From join message header if not also a Required or Optional-
Field.

Organization From join message header if not also a Required or Optional-
Field.

ModerationDate Date for expiry of moderation of commands other than Join/
Leave

AcceptVals Command parameters associated with command being mod-
erated.

Variable Meaning
162 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetMXRecord

GetMXRecord performs an MX lookup on the hostname specified
and returns a list of the MX hosts for this address in priority order.

str = GetMXRecord(hostname)

Parameters

Hostname is the name of the host to look up.

Returns

A space-separated list of hostnames and their priorities. Each
priority is separated from its host name by a semi-colon (;).

Remarks

The priority order is highest priority (lowest number) first.

Example

Print (GetMXRecord("companyA.dom"));

Result

mail.companyA.dom;10 mail.insnet.net;20

See also

GetHostname
 Gordano Ltd, 1995-2015 163

Functions MML Programmer’s Guide
GetOs

GetOS obtains the operating system.

n = GetOs()

Parameters

None.

Returns

One of the following:
1. WinNT.
2. Win95.

Remarks

Further operating systems may soon be added to the list.

Example

On a Windows NT server this will return "1":

GetOS();
164 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetOsStr

GetOsStr obtains a string identifying the operating system.

n = GetOsStr()

Parameters

None.

Returns

One of the following:

’winnt’ includes NT3.51, NT4 and Windows 2000

’win95’ includes win98

’solaris’ includes sparc and intel versions

’unknown’

Remarks

Further operating systems may soon be added to the list.

Example

On a Windows NT server this will return "winnt":

GetOsStr();
 Gordano Ltd, 1995-2015 165

Functions MML Programmer’s Guide
GetPostFixes

GetPostFixes obtains a list of the domain’s postfixes.

n = GetPostFixes(domain)

Parameters

domain

The domain for which postfixes should be listed.

Returns

a space seperated list of postfixes used in that domain.

Remarks

Further operating systems may soon be added to the list.

Example
x = GetPostFixes("CompanyA.dom");
print(x);

Result
postfix1 postfix2 postfix3

See also

AddPostfix, RemovePostfix, AddDomain
166 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetProcessorStr

GetProcessorStr obtains a string identifying the server processor.

n = GetProcessorStr()

Parameters

None.

Returns

One of the following:

’intel’

’alpha’

’unknown’

Remarks

Further operating systems may soon be added to the list.

Example

On an Intel machine this will return "intel":

GetProcessorStr();

See also

GetOsStr
 Gordano Ltd, 1995-2015 167

Functions MML Programmer’s Guide
GetProtocolText

GetProtocolText returns the protocol string for the current
connection.

n = GetProtocolText()

Parameters

None.

Returns

the protocol string for the current connection (HTTP, HTTPS, FTP)

Example
print(getprotocolText());

See also

GetConnectionVariables, GetProtocolType
168 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetProtocolType

GetProtocolType returns an integer representing the current
protocol type.

n = GetProtocolType()

Parameters

None.

Returns

an integer representing the current protocol type.

Example
Print(GetProtocolType());

Result
3

See also

GetConnectionVariables, GetProtocolText
 Gordano Ltd, 1995-2015 169

Functions MML Programmer’s Guide
GetProxyCacheSize

GetProxyCacheSize obtains the current cache size.

n = GetProxyCacheSize()

Parameters

None.

Returns

The current proxy cache size in bytes.

Example
print(getproxycachesize());

See also

ProxyAgeCache
170 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetRand

GetRand gets a random number

n = GetRand([modulus])

Parameters

Modulus(optional)

the optional modulus of the random number.

Returns

a random number

Example
print(getrand());
 Gordano Ltd, 1995-2015 171

Functions MML Programmer’s Guide
GetRealLogonUser

GetRealLogonUser obtains the real account name of the currently
logged on user.

n = GetrealLogonUser()

Parameters

None.

Returns

The real account name of the currently logged on user.

Example
AddSession("joe@CompanyA.dom", "joespassword");
x = GetRealLogonUser();
print(x);
Delsession();

Result

companyA.dom\joe
172 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetRemoteConnectionAddr

GetRemoteConnectionAddr returns the IP address of a
connected user’s Web browser.

addr = GetRemoteConnectionAddr()

Parameters

None.

Returns

The IP address of the Web browser belonging to the user who has
connected.

Example

Print(GetRemoteConnectionAddress());

Result

188.78.12.35

See also

GetIPAddress
 Gordano Ltd, 1995-2015 173

Functions MML Programmer’s Guide
GetSessionID

GetSessionID gives the ID for the current session.

str = GetSessionID()

Parameters

None.

Returns

The Id for the current session.

Example

print(GetSessionID());

Result

8e573f13eaa0422958d93aab91bbe2af
174 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetSessionVariables

GetSessionVariables lists variables for the session. It’s only used
for debugging.

str = GetSessionVariables()

Parameters

None.

Returns

A space-separated list of GLOBAL and SESSION variables for the
session.

Example

GetSessionVariables();

Result

Variable Name Value
action New schedule
HTTP_Accept image/gif,image/x-xbitmap,image/jpeg,
 image/pjpeg, */*
HTTP_Accept_Charset iso-8859-1,*,utf-8
HTTP_Accept_Language en
HTTP_Connection Keep-Alive
HTTP_Content_length 21
HTTP_Content_type application/x-www-form-urlencoded
HTTP_Host 127.0.0.1:8000
HTTP_Referer http://127.0.0.1:8000/Dialup/Rule.mml?
 Change Open=Dialup&ChangeTabIndex=1
HTTP_User_Agent Mozilla/4.01 [en] (WinNT; I)
LOCAL_ADDR 127.0.0.1

etc, etc.

See also

“Diagnostics” on page 302.
 Gordano Ltd, 1995-2015 175

Functions MML Programmer’s Guide
GetStatus

GetStatus returns the status of a service.

str = GetStatus(service)

Parameters

Service is one of these: ALL_SERVICE, SMTP_SERVICE,
POST_SERVICE, POP_SERVICE, IMAP_SERVICE or WWW_SERVICE.

Returns

These four fields are shown after the service name:
• Service id.
• IP address.
• Status —IDLE, LOGN, HELO, etc. For a full list for each service,

see the Gordano Administrator’s Guide.
• Time — the time the thread has spent processing the

transaction, in seconds.

Example

GetStatus(LIST_SERVICE);

Result

CU LIST 0 127.0.0.1 LOGN 25.32

See also

ServiceStatus
176 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetSupportInfo

GetSupportInfo gets a list of registered local support contacts.

str = GetSupportInfo()

Parameters

None.

Returns

a comma seperated list of addresses specified as contact addresses
which Gordano support should reply to in response to support
enquiries.

Example

print(GetSupportInfo());

Result

postmaster@CompanyA.dom,joe@CompanyA.dom,Jane@CompanyA.dom
 Gordano Ltd, 1995-2015 177

Functions MML Programmer’s Guide
GetUID

GetUID generates a unique string

GetUID()

Parameters

None

Returns

Unique string

Example
Print (GetUID());

Result

Unique string similar to:
14304950600013
178 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
GetUsersOfType

GetUsersOfType lists all accounts of the specified type in the
domain.

str =
GetUsersOfType(domain,typebits[,zerotype[,usertypes[,seperator[,ba
nnedtypes]]]]);

Parameters

Domain

The domain name.

Typebits

A bitmask of account types. For example, a standard mail
account with no aliases would take the value 262146, the
decimal equivalent of bit 1 plus bit 18. See the GMS
Reference Guide for full details.

Zerotype

If true, includes accounts with an account type of 0. These
are usually deleted accounts. The mask cannot include
these.

UserTypes

If true returns the user type in the results. Default is false.

Seperator

The seperator used to delimit the results.

BannedTypes

Bitmaps of types that willbe banned from the results.
Default value will vary due to the location of the script. If the
script is located in a list sub directory default will ban all list
and group types.

Set value to 0 to allow all types.

Returns

A colon-separated list of accounts.

Remarks

The function takes a list of users, a user attribute to check, the
value of
that attribute you are looking for and finally a separator. The
output includes accounts from NT SAM and any authorised DLLs.

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 179

Functions MML Programmer’s Guide
This function can be slow for large membership databases.

Examples

The following piece of MML would run through the entries in your
useraccesslist checking the AccessRights attribute for any that have
rights set to access the complete system and return a list of these
using : as a separator.

FilterUsersOfType("\\UserAccessList", "AccessRights", ACCESS_RIGHT_SYSTEM,":")

This uses a mask of 16 to find superlist accounts in the domain
CompanyA.dom, and also has the zerotype set to find deleted
users:

GetUsersOfType("companyA.dom","16",TRUE,FALSE,:,0);

Result

Listmaster and listsuper are superlists, Fred’s is a deleted account:

listmaster,16:listsuper,16:fred,16

See also

FilterUsersOfType, GetAllMembers
180 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
IMIsAvailable

IMIsAvailable validates if a user is logged on to Instant Messaging
and is available to receive messages.

IMIsAvailable(Email Address,[Timeout])

Parameters

Email Address

An address in the format user@domainname

Timeout (Optional)

Timeout in seconds.

Infinite if not selected

Returns

TRUE if the user is online

FALSE if the user is not online

Example

This checks if the user is online and available for 10 seconds

if (IMIsAvailable("postmaster@companyA.com",10))
{
Print ("Online");
}

See also

IMSendMessage
 Gordano Ltd, 1995-2015 181

Functions MML Programmer’s Guide
ImportFolder

ImportFolder imports a mailbox from Eudora, Outlook Express or
Netscape format.

Importfolder(export,import,importtag,type)

Parameters

export

the name of the folder messages are to be imported from.

import

the folder to which messages in the export folder are to be
copied.

importtag

This tag is applied to all messages imported

type

The type of client from which you are importing the
messages

0 = Eudora (v3)

1 = Netscape (v4)

2 = Outlook Express (v5)

3 = UNIX mailbox

Remarks

Since there is no absolute path option in this function you will need
to copy the file to be imported under the user’s directory. The
suggested location is domain\username\Attachments\folderimport.

The imported file is deleted so make sure you keep a copy
elsewhere if you want to retain it.

Returns

The number of messages that have been imported.

Example
report =
importfolder("companyA.dom\\joe\\Attachments\\folderimport\\Inbox.dbx","companyA.d
om\\joe\\InBox","","2");
print(report," Outlook Express messages imported");

Result
16 Outlook Express messages imported
182 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ImportMembers

ImportMembers imports a list of members into a list.

Importmembers(listname,memberlist,replace)

Parameters

listname

the name of the list the members are to be added to.

memberlist

the list of members for import in the format

user@domain[, Digest=x, Show=x, Ack=x, MyPassword=x,
Digest_Type=x, Suspended=x]

replace

if set to true existing member records matching any from
the imported file will be replaced with the new information
in the imported file.

Returns

false on error.

Remarks

Each member record needs to be on a line of its own

Example

import_addlist = "import@companyA.dom \r\n import1@companyA.dom";
import_addlist = Trim(import_addlist,"\r\n");
import_addlist = Trim(import_addlist);
importmembers("companyA.dom\\yourlist",import_addlist,1);

Results

Two members get added to the list, none of the optional switches
such as Digest are set so the list defaults will apply.
 Gordano Ltd, 1995-2015 183

Functions MML Programmer’s Guide
IMSendMessage

IMSendMessage sends an instant message to a user.

IMSendMessage(From,To,Message)

Parameters

From

Email address the message is from.

To

Email address the message is to.

Message

Message content. The message is limited to 256 characters,
any data over 256 characters will be truncated.

Returns

Nothing

Remarks

If the user is not online the messages will be deleted.

Example
send = IMSendMessage("postmaster@companyA.com","user1@CompanyA.com","Hello
World");

Result

Message sent to user1@companyA.com showing "Hello World".

See also

IMIsAvailable
184 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
IncrementDate

IncrementDate increments one or more of the segments of a date
and returns a valid date structure.

IncrementDate(date, day [,month] [,year])

Parameters

date

The date structure to be adjusted

day

A whole number of days to be added

month

A whole number of months to be added (optional)

year

A whole number of years to be added (optional)

Returns

An adjusted date structure

Example

d1 = Date(1964, 12, 28);
d2 = IncrementDate(d1, 0, 3);

print(d1);
print(d2);

Result

1964-12-28
1965-03-28

See also

AddDate
 Gordano Ltd, 1995-2015 185

Functions MML Programmer’s Guide
InStr

InStr searches for a string within a larger string and returns the
location that the string starts in.

n = InStr(search_string,look_for_string[,flag])

Parameters

Search_string

The string to search.

Look_for_string

The string to look for.

Flag

If this is TRUE search in reverse order.

Returns
• 0 — if the string is not found.
• n — the character position at which <Look_for_string> starts.

Example

Print(InStr("hello world", "world"),
);
Print(InStr("banana bunch", "world"),
);
Print(InStr("hello world hello world", "world", TRUE),
);

Result

7
0
19

See also

Match, Mid
186 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Interpret

Interpret runs a specified script.

Interpret(script)

Parameters

Script

the script to be run

Returns

The output form the script

Example

manual = interpret(mid(H1,3), TRUE);
 Gordano Ltd, 1995-2015 187

Functions MML Programmer’s Guide
IsAbsoluteFilename

IsAbsoluteFilename tests whether a filename is absolute.

tf = IsAbsoluteFilename(filename)

Parameters

The name of the file to test.

Returns

TRUE if the pathname is absolute, otherwise FALSE.

Example

if (IsAbsoluteFilename(filepath))
{
 Print("Do not use absolute filenames");
}

See also

The notes on absolute filenames at the start of this chapter.
188 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
IsConnected

IsConnected reports the status of a RAS (Remote Access Service)
connection.

tf = IsConnected()

Parameters

None.

Returns

TRUE if there’s an active RAS connection to the Internet.

Example

if (!IsConnected())
{
 if (Autoconnect("Demon internet","Custom dialup"))
 {
 Print ("Connected");
 }
}

See also

AutoConnect, AutoDisconnect
 Gordano Ltd, 1995-2015 189

Functions MML Programmer’s Guide
IsDate

IsDate tests whether the variable specified is in valid date format.

tf = IsDate(date)

Parameters

Date is a string.

Returns

TRUE if the variable specified is in valid date format, otherwise
FALSE.

Remarks

If you want to test for a valid date, for example to rule out dates
like February 31st, use IsValidDate instead.

Example

Print (IsDate("1997-06-04"),
);
Print (IsDate("hello"),
);

Result

1
0

See also

DateTimeFormat, IsValidDate
190 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
IsDialupEnabled

IsDialupEnabled tests whether dialup is enabled on the system.

tf = IsDialupEnabled()

Parameters

None.

Returns

TRUE if dialup is enabled, otherwise FALSE.

Example

if (!IsDialupEnabled())
{
 Print("Dialup is not operating");
}

See also

AutoConnect, AutoDisconnect, IsConnected
 Gordano Ltd, 1995-2015 191

Functions MML Programmer’s Guide
IsDomain

IsDomain tests whether the domain specified is local.

IsDomain(domain)

Parameters

domain

the domain to check.

Returns

true if the domain is local else false

Example
if (isdomain("CompanyA.com"))
 {
 print("Local");
 }
 else
 {
 print("Non local");
 }
192 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
IsInteger

IsInteger tests whether the variable specified is a valid integer
number.

tf = IsInteger(variable)

Parameters

Variable is the number to be tested.

Returns

TRUE if the number is a valid integer, otherwise FALSE.

Example

Print IsInteger("78") CRLF;
Print IsInteger(89) CRLF;
Print IsInteger("hello") CRLF;

Result

1
1
0

 Gordano Ltd, 1995-2015 193

Functions MML Programmer’s Guide
IsIPAddress

IsIPAddress tests whether a variable is an IP address.

tf = IsIPAddress(var)

Parameters

Var is the variable to test.

Returns

TRUE if the IP address is valid, otherwise FALSE.

Example

y = IsIPAddress(192.44.55.12);
yy = IsIPAddress("hello");
Print("y","
","yy");

Result
1
0

See also

GetHostname
194 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
IsLoggedOn

IsLoggedOn tests whether a user is logged on.

tf = IsLoggedOn()

Parameters

None.

Returns

TRUE if a user is logged on and verified, otherwise FALSE

Example

AddSession("joe@CompanyA.dom", "joespassword");
x = isloggedon();
print(x);
delsession();

Result
1

 Gordano Ltd, 1995-2015 195

Functions MML Programmer’s Guide
IsMemberOfList

IsMemberOfList tests whether a named account is a member of a
GLList or GLCommunicator list.

tf = IsMemberOfList(listname,listaddress)

Parameters

Listname

 is the list account to check. membership of.

ListAddress

is the address of the person that you want to check is a
member or not.

Returns

TRUE if the named account is a member of an NTList list on the
server, otherwise FALSE.

Example

listName = "domain.dom\\list"
listAddress = "domain.dom\\member"

if (!IsMemberOfList(listName, listAddress))
{
 Print(ListAddress, " is not a member of ", ListName);
}
else
{
 Print(ListAddress, " is a member of ", ListName);
}

See also

GetAllMembers
196 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
IsValidDate

IsValidDate checks whether the supplied date is valid. A date of
31st February, for example, will be rejected.

tf = IsValidDate(string)

Parameters

String is a date string.

Returns

TRUE if the date is acceptable, otherwise FALSE.

Remarks

To test whether a date format is correct use IsDate instead.

Example

Print(IsValidDate("31-02-99",
));
Print(IsValidDate("21-02-99"));

Result
0
1

See also

IsDate
 Gordano Ltd, 1995-2015 197

Functions MML Programmer’s Guide
IsValidEmailAddress

IsValidEmailAddress checks whether the supplied e-mail address
contains the characters of a valid e-mail address.

tf = IsValidEmailAddress(string)

Parameters

String is a string.

Returns

TRUE if the e-mail address is acceptable, otherwise FALSE.

Remarks

The fact that an address is valid does not mean that the named
account actually exists in the domain given.

Example

Print(IsValidEmailAddress("joexcompanyA.dom",
));
Print(IsValidEmailAddress("joe@companyA.dom"));

Result
0
1

See also

VerifyUser
198 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
IsValidPassword

IsValidPassword checks that a password matches the current
system password policy.

tf = IsValidPassword(password)

Parameters

Password is a string containing the password.

Returns

TRUE if the password is acceptable, otherwise FALSE.

Remarks

A password policy can dictate, for example, that passwords:
• Have at least six characters.
• Contain at least one number.

Example

if (!IsValidPassword(pwd))
{
 Print("Password is invalid!");
}

See also

EncryptPassword
 Gordano Ltd, 1995-2015 199

Functions MML Programmer’s Guide
IsValidStr

IsValidStr tests whether all the characters in a string are from a
permitted list.

tf = IsValidStr(string,valid_chars)

Parameters

String

The string for validation.

Valid_chars

The string containing characters that are valid in a string.

Returns

TRUE if all the string’s characters are from "valid_chars", otherwise
FALSE.

Example

Print(IsValidStr("abc","abcde"));
Print(IsValidStr("abz","abcde"));

Result

1
0

See also

InStr, Trim
200 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
IsValidUserName

IsValiduserName tests whether the specified username contains
invalid characters for a username.

IsValidUserName(name)

Parameters

name

The username to check for validity.

Returns

TRUE if the username is valid

Example
if (IsValidUserName("joe"))
{
print("UserName OK");
}
else
{
print("UserName contains invalid characters");
}

 Gordano Ltd, 1995-2015 201

Functions MML Programmer’s Guide
IsWildcard

IsWildcard tests whether a string contains a wildcard.

tf = IsWildCard(string)

Parameters

String is the string to search.

Returns

TRUE if a wildcard is found in the string, otherwise FALSE.

Remarks

Currently only the wildcards "*" and "?" are checked for.

Example

Print(IsWildcard("abc*"),
);
Print(IsWildcard("abz"));

Result

1
0

See also

IsValidStr, WildcardMatch
202 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
KillScript

KillScript kills the specified script.

KillScript(ThreadId)

Parameters

ThreadId

The thread Id of the script to be killed.

Returns

Nothing

Remarks

Currently only the wildcards "*" and "?" are checked for.

Example

KillScript("184")

See also

ListRunningScripts, SetScriptPriority
 Gordano Ltd, 1995-2015 203

Functions MML Programmer’s Guide
LanguageName

LanguageName gives the full name for the language code
specified.

LanguageName(shortname)

Parameters

shortname

the code for the language that a full name is required for.

Returns

full name of the language

Example

Print(LanguageName("en-us"));

Result
English(United States)

See also

SetSessionLanguage, ConfiguredLanguages, DefaultLanguage,
NLS,
204 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Left

Left returns a string containing n characters from the left hand side
of the string.

str = Left(string,n)

Parameters

String

The string for dissection.

n

The number of characters required.

Returns

Str is the string n characters long.

Remarks

If the string is less than n characters long, the function returns the
whole string.

Example

z = "World Wide Web";
Print(left(z, 5));

Result

World

See also

Len, Right, Mid, Trim
 Gordano Ltd, 1995-2015 205

Functions MML Programmer’s Guide
Len

Len returns the number of characters in the supplied string.

n = Len(string)

Parameters

String is the string whose length is required.

Returns

The length of the string.

Example

Print(len("World Wide Web"));

Result

14

See also

Left, Right, Mid, Trim
206 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ListRunningScripts

ListRunningScripts Lists any scripts that are currently running.

n = listRunningscripts(showself)

Parameters

Showself

if set to true the current connection is included.

Returns

A space seperated list of the scripts that are running. The type of
script, location the script was called from, loggedon user, date and
threadID are given for each script returned. Each of these values is
seperated by a semi-colon.

Example

print(listrunningscripts(1));

Result

USER;\test.mml;companyA.dom\joe;2001-04-19+16%3a34%3a32;200

See also

KillScript, SetScriptPriority
 Gordano Ltd, 1995-2015 207

Functions MML Programmer’s Guide
ListVersion

ListVersion returns the major version number of NTList.

n = ListVersion()

Parameters

None.

Returns

A single digit, the major version number. For version 4.00.20, for
example, this would be "4".

Example

Print(ListVersion());

Result

4

208 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Location

Location terminates execution of the current script and abandons
its contents, then loads the specified page into the Web browser.

Location(URL[,perm_or_temp])

Parameters

URL

The URL the Web browser goes to.

Perm_or_temp

The mode the browser uses, permanent or temporary. The
default is temporary.

Returns

Nothing.

Example

Location("http://www.companyA.dom");

Result

The Web browser jumps to the given URL instead of displaying any
of the script produced.
 Gordano Ltd, 1995-2015 209

Functions MML Programmer’s Guide
Log

Log writes a line to the script engine's log file. This function is
useful for timed scripts.

Log(level,stringlist)

Parameters

Level

The log level — Progress, Statistics, Returns, Protocol, GMS
Anti-Spam, DNS or Failures (see the GMS Reference Guide
for full details). Specify this using the appropriate constant,
for example LOG_PROGRESS.

Stringlist

A sequence of strings.

Returns

Nothing.

Remarks

If you specify PROGRESS_LOG and progress logging is turned on,
the strings are written to the log file.

Example

Log(LOG_FAILURE,"Event failed",Time());
210 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
LoggedOnUsers

LoggedOnUsers lists all accounts currently logged onto the Web
site.

str = LoggedOnUsers()

Parameters

None.

Returns

A space-separated list of accounts.

Remarks

You must be logged on to use this function.

Example

LoggedOnUsers();

Result

Joe@companyA.dom Kate@companyA.dom Simon@companyX.net

See also

GetAllMembers
 Gordano Ltd, 1995-2015 211

Functions MML Programmer’s Guide
LSAppend

LSAppend adds the given string to the end of the space-separated
list.

str = LSAppend(string,string_to_append)

Parameters

String

A space-separated list of strings.

String_to_append

The string to be added.

Returns

A string containing the original string, a space, then the newly
appended string.

Remarks

If the list is separated by anything other than spaces, use
LSAppend2.

Example

LSAppend("hello abc def", "opt");

Result

hello abc def opt

See also

LSAppend2, LSDelete, LSDeleteElement, LSElement, LSFind,
LSFirstMatch, LSLength, LSMatch, LSOrder, LSReplace, LSSubset
212 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
LSAppend2

LSAppend2 adds the given string to the end of a list.

str = LSAppend2(string,string_to_append[,separator])

Parameters

String

A list of strings separated by spaces or some other character.

String_to_append

The string to be added.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

A string containing: a string then <space> then the
string_to_append.

Remarks

Unlike LSAppend, this function does not require the list to be
separated by spaces.

Example

LSAppend2("hello;abc;def","opt",";");

Result

hello abc def opt

See also

LSAppend, LSDelete, LSDeleteElement, LSElement, LSFind,
LSFirstMatch, LSLength, LSMatch, LSOrder, LSReplace, LSSubset
 Gordano Ltd, 1995-2015 213

Functions MML Programmer’s Guide
LSDelete

LSDelete removes an element from the list and returns the result.

str = LSDelete(string,item_to_remove[,separator])

Parameters

String

A list of strings separated by spaces or some other character.

Item_to_remove

The element to remove from the string.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

String with specified element(s) removed.

Remarks

If the element is not found, no action is taken. If the
<item_to_remove> appears more than once, each occurrence is
removed.

When searching the list of strings for deletion, the string comparisons are not
case-sensitive.

Example

LSDelete("hello abc def ABC", "abc");

Result

hello def

See also

LSAppend, LSAppend2, LSDeleteElement, LSElement, LSFind,
LSFirstMatch, LSLength, LSMatch, LSOrder, LSReplace, LSSubset
214 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
LSDeleteElement

LSDeleteElement removes the nth element from the list and
returns the result.

str = LSDeleteElement(string,number[,separator])

Parameters

String

A list of strings separated by spaces or some other character.

Number

The position of the element to remove from the string.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

String with specified element removed.

Remarks

If the element is not found, no action is taken.

Example

LSDelete("hello abc def", 2);

Result

hello def

See also

LSAppend, LSAppend2, LSDelete, LSElement, LSFind, LSFirstMatch,
LSLength, LSMatch, LSOrder, LSReplace, LSSubset
 Gordano Ltd, 1995-2015 215

Functions MML Programmer’s Guide
LSElement

LSElement obtains a specified element from a list.

 str = LSElement(string,n[,separator])

Parameters

String

A list of strings separated by spaces or some other character.

N

The number of the element to return.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

A string containing the element specified. If the element does not
exist, this string will be empty.

Example

LSElement("the force is strong within you", 2);

Result

force

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSFind,
LSFirstMatch, LSLength, LSMatch, LSOrder, LSReplace, LSSubset
216 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
LSFind

LSFind returns the position of an element in a string.

n = LSFind(list_string,element[,separator])

Parameters

String

A list of strings separated by spaces or some other character.

Element

The string to look for.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns
• 0 — if the element is not found.
• N — the number of the element in the string. For example, a

value of 1 shows that the first entry matched.

Remarks

If the element appears in the list more than once, only the first
occurrence is returned.

Example

LSFind("hello abc def", "def");

Result

3

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSElement,
LSFirstMatch, LSLength, LSMatch, LSOrder, LSReplace, LSSubset
 Gordano Ltd, 1995-2015 217

Functions MML Programmer’s Guide
LSFirstMatch

LSFirstMatch looks for the first part of a string that matches a
wildcard string and returns the number of that element.

n = LSFirstMatch(str,match_str[,separator])

Parameters

Str

A list of strings separated by spaces or some other character.

Match_str

The wildcard string to look for.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

The number of the first element that matches. Zero (0) means
there’s no match.

Example

LSFind("hello world", "*wo");

Result

2

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSElement,
LSFind, LSLength, LSMatch, LSOrder, LSReplace, LSSubset
218 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
LSLength

LSLength counts the number of elements in a list string.

n = LSLength(string[,separator])

Parameters

String

A list of strings separated by spaces or some other character.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

The number of elements in a list string.

Example

LSLength("hello;abc;def",";");

Result

3

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSElement,
LSFind, LSFirstMatch, LSMatch, LSOrder, LSReplace, LSSubset
 Gordano Ltd, 1995-2015 219

Functions MML Programmer’s Guide
LSMatch

LSMatch returns a string list containing only those elements that
match the wildcard parameter given.

str = LSMatch(string,match[,separator])

Parameters

String

A list of strings separated by spaces or some other character.

Match

A wildcarded string.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

A string listing the entries that matched.

Example

LSMatch("abc def aty", "a*");

Result

abc aty

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSElement,
LSFind, LSFirstMatch, LSLength, LSOrder, LSReplace, LSSubset
220 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
LSOrder

LSOrder returns all the elements in the string in ASCII order.

str = LSOrder(in[,separator])

Parameters

In

A list of strings separated by spaces or some other character.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

The string of elements in ASCII order.

Remarks

The case used for elements is ignored.

Example

LSOrder("abc def aty");

Result

abc aty def

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSElement,
LSFind, LSFirstMatch, LSLength, LSMatch, LSReplace, LSSubset
 Gordano Ltd, 1995-2015 221

Functions MML Programmer’s Guide
LSPopElement

LSPopElement removes the first element of a list and assigns it to
the given variable name.

str = LSPushElement(list,name[,seperator])

Parameters

list

the string from which the first element should be removed.

name

the name of a variable to which the first list element will be
assigned.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

A variable with the name specified in "name" and a value of the
first element in the list.

Example

mylist = "part1 part2 part3 part4";
while mylist != ""
 {
 LSPOPElement(mylist,myelement);
 print(myelement,"
");
 }

Result

part1
part2
part3
part4

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSElement,
LSFind, LSFirstMatch, LSLength, LSMatch, LSReplace, LSSubset,
LSPushElement
222 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
LSPushElement

LSPushElement adds the specified element to the first position in
the list.

str = LSPushElement(list,element[,seperator])

Parameters

list

the string to which the new element should be added.

element

the text to be added as the first element.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

The list with the defined element in the first position.

Example

mylist="part2";
x = LSPushElement(mylist,"part1");
print(mylist);

Result

part1 part2

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSElement,
LSFind, LSFirstMatch, LSLength, LSMatch, LSReplace, LSSubset
 Gordano Ltd, 1995-2015 223

Functions MML Programmer’s Guide
LSReplace

LSReplace searches though a string and replaces any sequence
that matches with a new string.

str = LSReplace(in,match,newstr)

Parameters

In

The string to search and replace elements in.

Match

The element to replace in the string.

Newstr

The string to replace elements which "match" with.

Returns

The resultant string.

Remarks

This can be used to change the separator character in a string.

Example

This example replaces the space separator with a semi-colon (;).

LSReplace("abc def ghi", " ", ";");

Result

abc;def;ghi

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSElement,
LSFind, LSFirstMatch, LSLength, LSMatch, LSOrder, LSSubset
224 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
LSSubset

LSSubset obtains a given number of elements from a list.

str = LSSubset(str,from_elem,num_elems[,separator])

Parameters

Str

A list of strings separated by spaces or some other character.

From_elem

The starting element string.

Num_elems

The number of elements to return, including <from_elem>.

Separator (optional)

The character which is used to separate elements in the
string. If this is not specified, the separator is assumed to be
a space.

Returns

A substring containing <num_elems> elements from <str> starting
with the <from_elem> element specified. If <from_elem> is not in
the list, the function returns an empty value.

Example

LSSubset("abc def ghi jkl mno","def",2);

Result

def ghi

See also

LSAppend, LSAppend2, LSDelete, LSDeleteElement, LSElement,
LSFind, LSFirstMatch, LSLength, LSMatch, LSOrder, LSReplace
 Gordano Ltd, 1995-2015 225

Functions MML Programmer’s Guide
Match

Match compares two strings and returns a value depending on
their relationship.

n = Match(string_1, string_2)

Parameters

String_1

The first string.

String_2

The second string.

Returns
• 1 — if string 1 > string 2.
• 0 — if string1 = string2.
• -1 — if string 1 < string 2.

Example

Print("0 = ", Match("Joe", "JOE"), "
");
Print("1 = ", Match("joe", "o"), "
");
Print("-1 = ", Match("joe", "joed"), "
");
Print("0 = ", Match("", ""), "
");
Print("-1 = ", Match("", "hello"), "
");
Print("1 = ", Match("hello", ""), "
");

Result

0 = 0
1 = 1
-1 = -1
0 = 0
-1 = -1
1 = 1

See also

WildCardMatch
226 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Md5Str

Md5Str returns the MD5 digest of the specified string.

n = Md5Str(string)

Parameters

String

The string for conversion.

Returns

the md5 digest of the specified string

Example

x = Md5Str("This is a string");
print(x);

Result

41fb5b5ae4d57c5ee528adb00e5e8e74

See also

Filemd5
 Gordano Ltd, 1995-2015 227

Functions MML Programmer’s Guide
MemberFormat

MemberFormat extracts variables from a member record.

str = MemberFormat(string,member_handle)

Parameters

String

Defines information required on each member, using a "%"
to indicate the field to be completed. The case-sensitive
fields are:

Member_handle

Field Meaning

%a Acknowledge

%A AcceptCommand

%b NumBadMessages

%c DateConfirmSent

%d Domain

%f ForDays

%g DigestType

%h HelpSentTime

%i DigestSet

%I DigestTypeSet

%J DateJoined

%j TimeJoined

%L DateLeft

%l TimeLeft

%m DateToCommandModerator

%n Name (userid)

%p MyPassword

%r LeftReason

%s Show

%S ShowSet

%t Type

%T String version of Type

%u Suspended

%U UDIL

%X DateExpiry

%x TimeExpiry
228 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
The handle for the member, opened using
GetMemberRecord.

Returns

The string for the member in the specified format.

Example

mem = GetMemberRecord(dbase,"joe@companyA.dom");
Print("Member joined on ",MemberFormat("%J",mem),"
");

Result

Member joined on 1999-06-16

See also

GetMemberRecord, ReadNextMemberRecord, SetMemberRecord
 Gordano Ltd, 1995-2015 229

Functions MML Programmer’s Guide
Mid

Mid returns a specified number of characters starting from position
<from> in the given string.

str = Mid(string,from[,how_many])

Parameters

String

The string to parse.

From

A number indicating the position to start copying to the
new string. The first character is number 1.

How_many (optional)

The number of characters to copy to the new string. If this
is not specified, copy the whole string to the result.

Returns

One or more characters from the string.

Example

Print(Mid("hello world", 1, 5), "
");
Print(Mid("hello world", 7, 5), "
");

Result

hello
world

See also

Left, Right, Len, Trim
230 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
MsgAddAttachment

MsgAddAttachment adds an attachment to a message.

MsgAddAttachment(handle,account,filename[,subdir])

Parameters

Handle

The handle produced using MsgCreate.

account

The account that owns the file.

filename

the filename of the file to be attached.

subdir(optional)

the subdirectory the file is in

Returns

Nothing.

Remarks

Function fails if the handle parameter is not a message or the
message doesn’t exist.

Example

msg=msgCreate("j@jtest.dom","j@jtest.dom","test add attach");
if(msg)
 {
 MsgAddBody(msg, "FirstLine");
 msgaddattachment(msg,"CompanyA.dom\\joe","file.txt");
 msgclose(msg,MSG_SEND);
 }

Result

This produces a message with this body:

FirstLine

and the attachment of file.txt

See also

MsgCreate, MsgAddHeader, MsgAddRecipient, MsgCopy
 Gordano Ltd, 1995-2015 231

Functions MML Programmer’s Guide
MsgAddBody

MsgAddBody appends a line to the end of the message.

MsgAddBody(handle,line[,wrap])

Parameters

Handle

The handle produced using MsgCreate.

Line

The string to append to the message.

Wrap

Whether to wrap the text around after 70 characters. The
default is TRUE.

Returns

Nothing.

Remarks

Folder messages are read-only. To write to one of these, make a
copy of it using MsgCopy then modify that.

Example

Msg = MsgCreate("simon@simon.dom", "fred@wibble.dom", "Hello");
if (Msg)
{
 MsgAddBody(msg, "Hello Fred");
 MsgAddBody(msg, "How are you?");
 MsgAddBody(msg, "Simon");

 Print(Msg\Recipient,"
");
 Print(Msg\Date,"
");

 MsgClose(Msg,MSG_SEND);
}

Result

This produces a message with this body:

Hello Fred
How are you?
Simon

See also

MsgCreate, MsgAddHeader, MsgAddRecipient, MsgCopy
232 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
MsgAddFile

MsgAddFile attaches a file to a message.

MsgAddFile(handle,filename,type)

Parameters

Handle

The handle produced using MsgCreate.

Filename

The name of the file to attach.

Type

FILE_TEXT or FILE_BINARY. The option FILE_TEXT uses MIME
if required.

Example

This appends the file Myzip to the message:

msg = MsgCreate(to,from,"here’s the file");
if (msg)
{
 MsgAddFile(msg,myzip,FILE_BINARY);
 MsgClose(msg);
}

See also

 MsgCreate, MsgAddHeader, MsgAddBody, MsgAddRecipient

Only a verified account can add files with absolute path names.
 Gordano Ltd, 1995-2015 233

Functions MML Programmer’s Guide
MsgAddHeader

MsgAddHeader adds a new clause to the header of the message.

MsgAddHeader(handle,clause[,line[,replace[,append]]])

Parameters

Handle

The message’s handle, created using MsgCreate.

Clause

The clause to add. If there’s already a clause with this name,
it will be replaced by the new one.

Line

If line is NULL or empty, the function deletes the clause from
the header.

Replace (True or False)

If set to TRUE adds a new header clause, if the clause
already exiss it will be replaced. If set to FALSE and the
clause exists it will not be changed.

Append (True or False)

If set to TRUE the header will be appended to the existing
header list, i.e. placed at the end of the list. If set to FALSE it
will become the topmost header.

Note that if the 5th parameter is used that the behaviour of
the 4th parameter changes from "replace" to "remove", i.e.
it will remove the existing header.

Remarks

The MsgCompose function is required to commit the changes to
the email

Returns

TRUE if the clause is added successfully, otherwise FALSE.

Example

This adds a subject clause:

Print("Inserting \"[MAIL-LIST]\" into subject");
MsgAddHeader(Msg,"Subject","[MAIL-LIST] " + Msg\Subject);
MsgCompose(Msg);

See also

MsgCreate, MsgAddBody, MsgAddRecipient
234 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
MsgAddRecipient

MsgAddRecipient adds a recipient e-mail address (RCPT clause) to
a mail message.

MsgAddRecipient(handle,email_address)

Parameters

Handle

The message’s handle, created using MsgCreate.

Email_address

The string containing the e-mail address to add to the
delivery address, in the form "user@domain.dom".

Returns

TRUE if the address is added successfully, otherwise FALSE.

Example

Msg = MsgCreate("Sales <sales@companyA.dom>", "joe@
 companyA.dom", "Test message");
MsgAddBody(Msg, "First line of body");
for (i=0; i<199; i = i+1)
{
 MsgAddRecipient(Msg, i + "@companyA.dom");
}
Print("Spamming ", MsgClose(Msg,MSG_SEND), "e-mail addresses");

Result

Spamming 200 e-mail addresses

See also

MsgCreate, MsgAddHeader, MsgAddBody
 Gordano Ltd, 1995-2015 235

Functions MML Programmer’s Guide
MsgClose

MsgClose completes the creation of a message.

n = MsgClose(handle,action[,errorval[,delivery_domain]])

Parameters

Handle

The message handle created using MsgCreate.

Action

One of the following:
• MSG_SEND — put the message in the queue and ask

Post to send it immediately. The message will be sent to
all the recipients (using the same mechanism as the list
server).

• MSG_QUEUE — just put the message in the queue. If
many messages are being generated, follow this
function with a call to SendNotification to tell Post to
start either all queues or this specific queue.

• MSG_DROP — simply drop the message.

MSG_QUEUE and MSG_DROP can only be used with message handles cre-
ated by either MsgCreate or MsgCopy. The are not suitable for use with the
"email" object in an SMTP script.

ErrorVal (optional)

Variable used to hold the error returned if the message fails.

Delivery_domain (optional)

If you want to deliver the message directly, rather than
going back through GMS, set this to TRUE. If you do this,
the mail will not be checked by GMS Anti-Spam, Virus
Scanner, etc.

Returns

The total number of messages generated. A value of 0 means a
failure.

Remarks

Once the message has been processed, all its resources are
released.

Example

This example creates a one line message and sends it to 200
people:

Msg = MsgCreate("Sales <sales@companyA.dom>", "joe@
 companyA.dom", "Test message");
236 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
MsgAddBody(Msg, "First line of body");
for (i=0; i<199; i = i+1)
{
 MsgAddRecipient(Msg, i + "@companyA.dom");
}
Print("Spamming ", MsgClose(Msg,MSG_SEND), "e-mail addresses");

Result
Spamming 200 e-mail addresses

See also

MsgCreate, MsgAddHeader, MsgAddBody, MsgAddRecipient
 Gordano Ltd, 1995-2015 237

Functions MML Programmer’s Guide
MsgCompose

MsgCompose composes a partially constructed message into its
final form.

msgcompose(handle)

Parameters

Handle

is the handle of the message to be composed.

Returns

Nothing.

Example
msg = msgCreate("joe@CompanyA.dom","joe@CompanyA.dom","test size");
if (msg)
 {
 MsgAddBody(msg, "FirstLine");
 MsgCompose(msg);
 print(msgsize(msg));
 msgclose(msg,MSG_SEND);
 }

See also

MsgCreate, MsgAddHeader, MsgAddBody, MsgAddRecipient,
Msgsize
238 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
MsgCopy

MsgCopy copies an existing message to make a new message.

msg = MsgCopy(handle)

Parameters

Handle is the handle of the message to be copied.

Returns

A new message handle.

Remarks

While MsgCreate creates a brand new message, MsgCopy copies
an existing message. This is most useful in script.mml from GMS
Anti-Spam. When a message arrives this MML is run from SMTP to
perform GMS Anti-Spam’s filtering. In this case you are given a
special variable setup called "email". This is a read-only value so if
you wish to modify the message or send it to someone else you
must copy it. This is what MsgCopy is for.

The message this creates must be freed by using a separate call of
MsgClose to that used for the original message.

Example

In a GMS Anti-Spam script the "email" message object can be used
to check the message headers and body for matching criteria. This
example uses this to copy the message to the Postmaster:

if (email\recipient == "joe@companyA.dom")
{
 newMsg = MsgCopy(email);

 if (newMsg)
 {
 newMsg\rcpt = "postmaster@companyA.dom";
 MsgClose(newMsg, MSG_SEND);
 }
}

Result

See also

MsgCreate, MsgAddHeader, MsgAddBody, MsgAddRecipient
 Gordano Ltd, 1995-2015 239

Functions MML Programmer’s Guide
MsgCreate

MsgCreate starts generation of a new message.

Handle = MsgCreate(from,to,subject)

Parameters

From

The sender’s e-mail address. This is used in the SMTP MAIL
clause and the From: clause in the message header.

To

The destination of the e-mail address. This is used in the
SMTP RCPT clause and the To: clause in the message header.

Subject

The subject of the message. This must not exceed 75
characters.

Return Values

If the message is created, the result value is a handle which the
other Msg functions can use to access the message.

If the result is FALSE, no message was created and continuing to
use the handle will cause a fatal script error.

Warnings

When the script completes execution, any message that has not
been explicitly closed is removed. This may result in some loss of
resources.

Remarks

You must include a call to MsgClose before the script completes.

A plain text message is created unless the message has
attachments, in which case it will be MIME-encoded.

MsgCreate is one of several functions that can create a message
object. Message handles can also be created by the Folder
functions and are automatically passed to the server in scripts that
handle messages, for example, filter scripts.

To add additional recipients use MsgAddRecipient.
240 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
The handle has a series of parameters that can be read or set as
indicated in this table:

Parameter Access Description

lines RO Number of lines in the email message.

size RO Number of bytes in the message, including its headers.

recipients RW A space-separated, unordered list of recipients of the
message in the standard account form.

mail RO Returns the email address that will be used for the
MAIL protocol clause when the message is closed.

date RO Reads the date the message was composed and
attempts to convert it from the many forms seen on
the Internet into the standard MML format so that
other MML functions can access the information.

subject RO The subject clause.

messagedate RO The date field in its original format.

messageid RO Returns the message's unique ID if one has been
assigned.

udil RO Returns the unique ID used by the POP3 server to iden-
tify messages uniquely to POP3 clients.

status RO Returns information about whether the message has
been read. If it has not been read, returns "UNREAD".

<n> RO Returns line 'n' in the message. Line 1 is the first line
of the BODY of the message.

<clause> RO Returns a given clause from the header of the mes-
sage (if it exists). For example, result\from would
return the full "From:" clause of the message.

Example

This creates and sends a message to fred and updates some of the
message parameters:

Msg = MsgCreate("simon@simon.dom", "fred@wibble.com", "Hello");
if (Msg)
{
 MsgAddBody(msg, "Hello Fred");
 MsgAddBody(msg, "");
 MsgAddBody(msg, "How are you");
 MsgAddBody(msg, "Simon");

 Print(Msg\Recipient,"
");
 Print(Msg\Date,"
");

 MsgClose(Msg,MSG_SEND);
}

See also

MsgCopy, MsgAddHeader, MsgAddBody, MsgAddRecipient
 Gordano Ltd, 1995-2015 241

Functions MML Programmer’s Guide
MsgEndOfLines

MsgEndOfLines checks whether the end of the message has been
reached.

MsgEndOfLines(handle)

Parameters

Handle is the message handle.

Returns

TRUE if the end of the message has been reached, otherwise FALSE.

Example

line = MsgReadFirstLine(Msg);
while (!MsgEndOfLines(Msg))
{
 Print(ConvertToHTML(line));
 Print("\n");

 line = MsgReadNextLine (Msg);
}

See also

MsgReadFirstLine, MsgReadNextLine
242 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
MsgReadFirstLine

MsgReadFirstLine reads the first line of a message.

str = MsgReadFirstLine(handle)

Parameters

Handle is the message handle.

Returns

A string containing the line from the message.

Example

line = MsgReadFirstLine(Msg);
while (!MsgEndOfLines(Msg))
{
 Print(ConvertToHTML(line));
 Print("\n");

 line = MsgReadNextLine (Msg);
}

See also

MsgEndOfLines, MsgReadNextLine
 Gordano Ltd, 1995-2015 243

Functions MML Programmer’s Guide
MsgReadNextLine

MsgReadNextLine reads the next line of the message.

str = MsgReadNextLine(handle)

Parameters

Handle is the message handle.

Returns

A string containing the line from the message.

Example

line = MsgReadFirstLine(Msg);
while (!MsgEndOfLines(Msg))
{
 Print(ConvertToHTML(line));
 Print("\n");

 line = MsgReadNextLine (Msg);
}

See also

MsgEndOfLines, MsgReadFirstLine
244 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
MsgRemoveHeader

MsgRemoveHeader removes headers from a message.

MsgRemoveHeader (handle,clause)

Parameters

Handle

The message’s handle

Clause

The clause to remove.

Returns

TRUE if the cluse is removed successfully, otherwise FALSE

Example

This removes the Received: message headers:

headerLeft = true;
while (headerLeft)

{
headerLeft = MsgRemoveHeader(email, "Received:");
}

msgclose(email,MSG_SEND);

See also

MsgAddHeader.
 Gordano Ltd, 1995-2015 245

Functions MML Programmer’s Guide
MsgSetEncoding

MsgSetEncoding Sets the encoding for the specified message..

MsgSetEncoding(handle,encoding)

Parameters

Handle

 is the message handle.

encoding

the type of encoding to use.

0 - None

1 - Automatic

2 - Split Lines

3 - Quoted Printable

Remarks

The encoding can only be set once.

Returns

Nothing.

Example

MsgSetEncoding(msg,"3")

See also

MsgCreate, MsgAddBody, MsgClose
246 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
MsgSize

MsgSize returns the size of the specified message.

Size = MsgSize(handle)

Parameters

Handle

is the message handle.

Returns

A string containing the size of the message.

Remarks

requires the use of MsgCompose before it is called.

Example
msg = msgCreate("joe@CompanyA.dom","joe@CompanyA.dom","test size");
if (msg)
 {
 MsgAddBody(msg, "FirstLine");
 MsgCompose(msg);
 print(msgsize(msg));
 msgclose(msg,MSG_SEND);
 }

Result
216

See also

Msgcreate, MsgAddBody, MsgCompose, MsgClose
 Gordano Ltd, 1995-2015 247

Functions MML Programmer’s Guide
Nls

Nls print a language specific message identified by "messageID"

nls(messageID[,param1[,param2[,...[paramn...]]]])

Parameters

MessageID

is the id of the message to be returned

param1, param2, Paramn(optional)

Replaceable parameters in the form %1%, %2% etc where
%1% corresponds to param1, %2% corresponds to
param2 etc

Returns

the language specific message identified by messageId.

Example
nls("2");

See also

DefaultLanguage, ConfiguredLanguages, LanguageName,
SetSessionLanguage
248 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ODBCInstalled

ODBCInstalled tests whether ODBC is installed on the system.

tf = ODBCInstalled()

Parameters

None.

Returns

TRUE if ODBC is installed, otherwise FALSE.

Remarks

If ODBC is not installed, this function tries to load it.

Example

if (ODBCInstalled())
{
 Print("ODBC is installed");
}

 Gordano Ltd, 1995-2015 249

Functions MML Programmer’s Guide
OpenMemberDB

OpenMemberDB opens the specified member database, whether
this is a flat file or an SQL database.

handle = OpenMemberDB(account,access_type,repair)

Parameters

Account

A list name account, for example "test.com\test-list".

Access_type

FILE_READ (read only) or FILE_WRITE.

Repair

Alters the order of records. Possible values are:

DO_NOT_REPAIR - This is the option to choose if you are
opening just to read the DB with ReadNextMemberDB (you
are not calling WriteNextMemberDB) and the order of the
records returned is not important.

REPAIR_ON_WRITE - This is the option to use if you are
opening to use with GetNextMemberRecord or both
ReadNextMemberRecord and WriteNextMemberRecord.

REPAIR_IMMEDIATELY - This is the option to choose if you
are opening just to read the DB with ReadNextMemberDB
(you are not calling WriteNextmemberDB) and the order of
the records returned has to be in domain/account order.

Returns
• Handle — the handle for the database. This will be used in all

other membership file functions (see the list below). The handle
object sets handle\EOF TRUE if the end of the member file is
reached.

• FALSE — if it fails to open the database, for example because
the connection to the SQL server failed, or the Access database
does not exist.

Remarks

This function locks the database until a MsgClose is issued on the
message handle.

Example

This example opens a member database and prints all its member
records:

mydb = OpenMemberDB("test.com\\testlist",FILE_READ);

if (mydb)
250 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
{
 while (mymember = ReadNextMemberRecord(mydb))
 {
 Print("Account: ",mymember\member,"
");
 }

 CloseMemberDB(mydb);
}

See also

CloseMemberDb, GetAllMembers, GetMemberRecord,
SetMemberRecord, ReadNextMemberRecord
 Gordano Ltd, 1995-2015 251

Functions MML Programmer’s Guide
OpenZip

OpenZip opens the specified Zip file.

OpenZip(file)

Parameters

File is the handle of the Zip file.

Returns

Nothing.

Remarks

If the ZIP archive file does not already exist, this function creates it.

You cannot use MML to do things like extract files from a Zip file.

Example

zip = OpenZip("\\\\Test.zip");
if (zip)
{
 if (!AddZip(zip, "\\\\Timed.txt"))
 {
 Print("Couldn't add to zip");
 }
 CloseZip(zip);
 Print("Opened zip.");
}
else
{
 Print("Failed to open zip");
}

See also

AddZip, CloseZip
252 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Print

Print finds the value of each parameter in turn and outputs the
result to the Web server.

Print(x,y,z,...)

Parameters

There can be any number of parameters, separated by commas.

Returns

Nothing.

Example

a = 5;
b = 4;
Print("a + b = ", a+b);

Result

a + b = 9;
 Gordano Ltd, 1995-2015 253

Functions MML Programmer’s Guide
ProxyAgeCache

ProxyAgeCache deletes any proxy cache entry older than the
given number of days.

n = ProxyAgeCache(days,how)

Parameters

Days

The number of days.

How

PROXY_PURGE_ALL, PROXY_PURGE_CREATED or
PROXY_PURGE_LAST_USED.

For example, if you specify PROXY_PURGE_CREATED and
365 days, all entries created more than 365 days ago are
deleted, even those which have been used more recently
than this.

Returns

The cache size in bytes.

Example

This removes all entries which are older than 90 days:

ProxyAgeCache(90,PROXY_PURGE_ALL);
254 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
PurgeDNSCache

PurgeDNSCache clears the DNS cache.

PurgeDNSCache()

Parameters

None.

Returns

Nothing.

Example

PurgeDNSCache();
 Gordano Ltd, 1995-2015 255

Functions MML Programmer’s Guide
ReadNextMemberRecord

ReadNextMemberRecord reads the next member record in a list
database.

str = ReadNextMemberRecord(db_handle)

Parameters

Db_handle is the handle of the database opened by
OpenMemberDb.

Returns
• FALSE — if the end of the file is reached or there’s an error.
• Member_handle — the handle of the member’s record. This

has the following attributes:

Variable Meaning

Member The address in account format.

Type The "Type" bitmap; see the GMS Reference Guide.

Digest The current effective digest setting, TRUE or FALSE.

digest_set Digests set by this member (not list default) TRUE or FALSE.

digest_type Digest format — "Off", "Text", "Index" or "MIME".

digest_type_set Digest type set by this member (not list default) TRUE or FALSE

Show Show originating address in posts from this user TRUE or
FALSE

show_set "Show" set by this member (not list default) TRUE or FALSE.

Suspended Member suspended TRUE or FALSE.

Ack Acknowledge posts from this user TRUE or FALSE.

AcceptCommand Command awaiting user confirmation.

DateConfirmSent If this list required members to confirm their membership, this
will contain the date that the confirmation request was sent to
the user.

DateJoined Date that the person joined the list. If the join has not taken
place yet, then the date that the request was received.

NumBadMsgs Number of returned messages for member

ForDays If defined, the number of days before the person will auto-
matically be removed from the list.

DateLeft Date the user was removed/left the list.

LeftReason Reason why the user was removed/left the list.

HelpSentTime Time last help sent to member.

MyPassword Password user must use to modify their list settings.

SuspendDays If defined, the number of days to suspend posting of messages
to the member.
256 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Remarks

If the database has just been opened, the call returns its first record.

All other variables are taken from the member record (which has an
empty string for a variable not present).

Example

This example opens a member database and prints the member
field of all its records:

mydb = OpenMemberDB("test.com\\testlist",FILE_READ);

if (mydb)
{
 while (mymember = ReadNextMemberRecord(mydb))
 {
 Print("Account: ",mymember\member,"
");
 }

 CloseMemberDB(mydb);
}

See also

OpenMemberDb, CloseMemberDb, GetAllMembers,
GetMemberRecord, SetMemberRecord

Name From join message header if not also a Required or Optional-
Field.

Organization From join message header if not also a Required or Optional-
Field.

ModerationDate Date for expiry of moderation of commands other than Join/
Leave

AcceptVals Command parameters associated with command being mod-
erated.

Variable Meaning
 Gordano Ltd, 1995-2015 257

Functions MML Programmer’s Guide
RegGetVal

RegGetVal returns the value of the setting within the GMS
Registry hierarchy.

RegGetValue(key,type,name)

Parameters

key

the key relative to the Internet-Shopper registry key. e.g.
Mail\LDAPAuth

type

1 for String values and 2 for DWORDS

name

name of value e.g. CacheExpiry

Returns

value

Example

RegGetVal(("mail\\"& key), regtype, regname)

See also

RegSetVal
258 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
RegSetVal

RegSetVal sets the value of a setting within the GMS Registry
hierarchy.

RegSetValue(key,type,name,value)

Parameters

key

the key relative to the Internet-Shopper registry key. e.g.
Mail\LDAPAuth

type

1 for String values and 2 for DWORDS

name

name of value e.g. CacheExpiry

value

value e.g. 2

Returns

nothing

Example

RegSetVal(("mail\\"& key), regtype, regname, regvalue)

See also

RegGetVal
 Gordano Ltd, 1995-2015 259

Functions MML Programmer’s Guide
RemovePostFix

RemovePostFix removes the specified postfix from the specified
domain.

RemovePostFix(domain,postfix)

Parameters

domain

the domain from which the postfix is to be removed

postfix.

the postfix to be removed.

Returns

Nothing.

Example

removepostfix("companyA.dom","postfix1")

See also

GetPostFixes, AddPostFix, DelDomain
260 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Resolve

Resolve feeds the given string though the script server’s "#
resolving" algorithm.

str = Resolve(string[,preservecase])

Parameters

String

A string containing variable names that need to be resolved
(that is, containing variable names inside "#" marks).

preservecase

If set to true the case of the string will be preserved else
lowercase will be returned. If omitted lowercase is returned.

Result

A string containing the result of the resolution.

Remarks

This is useful for filename handling — see GMS Anti-Spam/
filterdomain.mml.

Resolution changes "\\" to "\".

Example

The two Print statements here produce the same result, but the line
using Resolve is neater:

username = "joe";
domain = domain.dom;
Print("#domain#","\","#username#"));
Print(Resolve("#domain#\\#username#"));

Returns

domain.dom\joe
domain.dom\joe

See also

IsValidStr
 Gordano Ltd, 1995-2015 261

Functions MML Programmer’s Guide
Right

Right returns characters from the right of the given string.

str = Right(string,n)

Parameters

String

The string to examine.

N

The number of characters to return.

Returns

The n rightmost characters of the given string

Remarks

If the string is shorter than n characters, the function returns the
whole string.

Example
String = Right("Prepare",4);
Print(String);

Result
pare

See also

Len, Left, Mid, Trim
262 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
RunExecutable

RunExecutable runs an executable file.

RunExecutable(filename[,errorcode,allowabsolutepaths])

Parameters

Filename - the name of the executable including the path.

Errorcode - defines a variable to hold the error code returned by the
executable.

Allowabsolutepaths - if true allows paths outside of the Gordano
directories to be used.

Returns

TRUE if successful, otherwise FALSE.

Remarks

Script execution stops until the executable has run and returned its
return code. Paths can either be in the form of MML paths, i.e.
\\bin\loadfile.exe or absolute paths as in the example below. The
System search paths are not used.

Example

test = RunExecutable(c:\temp\loadfile.exe,errorcode,TRUE);

See also

AddSession

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 263

Functions MML Programmer’s Guide
SearchFile

SearchFile searches a file for the given string.

n = SearchFile(filename,string[,absolutepath])

Parameters

Filename

The file to search.

String

The string to look for. This can contain wildcards.

Absolutepath (optional)

If set to TRUE this lets a verified account use absolute paths.

Returns

The number of the first line in the file which contains the string.

Example

Print("Date of birth found on line ",(SearchFile(Customer.txt,"Date of birth"),"
");

Result
Date of birth found on line 28.

See also

InStr, IsValidStr
264 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
SendNotification

SendNotification sends a message to the specified service.

SendNotification(service,message)

Parameters

Service

The name of the service to send the message to. This is a bit
field with the values POST_SERVICE, SMTP_SERVICE etc.

Message

The string to be sent to the service (for example, "QA
companyA.dom" to start a queue).

Service IPC Description

ALL_SERVICE DD domain Delete domain
’domain’

ALL_SERVICE DN domain New domain ’domain’

ALL_SERVICE DU domain Update domain
’domain’

ALL_SERVICE GD variable Delete global variable
’variable’

ALL_SERVICE GN variable New global variable
’variable’

ALL_SERVICE GU variable value Update global variable
’variable’

All excl www CU Send current service
status to www

All excl post/list LS domain Reload load-sharing
file for domain
’domain’

SMTP_SERVICE ES id Save eSarah ID

SMTP_SERVICE RF Reload redirect file

SMTP_SERVICE RB Reload DNSBL servers
file

SMTP_SERVICE RW domain Reload restricted word
file for domain
’domain’

SMTP_SERVICE AD user domain client_ip pop/imap Inform SMTP about
user dynamic IP

SMTP_SERVICE FF domain Reload footer file for
domain ’domain’

POST_SERVICE PS Reload the postservers
file
 Gordano Ltd, 1995-2015 265

Functions MML Programmer’s Guide
Returns

TRUE if the message is sent successfully, otherwise FALSE.

Remarks

The message is service- and GMS-specific.

Example

This starts the domain CompanyA.dom’s POST queue:

SendNotification(POST_SERVICE,"QA CompanyA.dom");

POST_SERVICE QA queue kick queue ’queue’

POST_SERVICE QN queue kick queue ’queue’

POST_SERVICE QK Kick all queues

POST_SERVICE QS From SMTP - kick
queue specified by
ETRN command

LIST_SERVICE SMTP,folder,new,cmd,from,to,udil,typ
e

Add specified message
to list queue.

LIST_SERVICE ML Re-read all queues.

Service IPC Description
266 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ServerDSNExists

ServerDSNExists checks whether Data Source Name (DSN) is
enabled on the server.

tf = ServerDSNExists()

Parameters

None.

Returns

TRUE if DSN exists, otherwise FALSE.

Remarks

DSN is used with ODBC databases; see the GMS Reference Guide
for details.

Example

if (ServerDSNExists(""))
{

Print("DSN is enabled.
");
}

See also

ODBCInstalled, ServerValidUser
 Gordano Ltd, 1995-2015 267

Functions MML Programmer’s Guide
ServerValidUser

ServerValidUser checks whether the DSN, username and
password are valid.

tf = ServerValidUser(DataSourceName,UserID,Password)

Parameters

DatasourceName

The Data Source Name to be checked.

UserID

The UserID for the DSN to be checked.

Password.

The password for the DSN to be checked.

Returns

TRUE if DSN, UserID and Password are valid.

Remarks

DSN is used with ODBC databases; see the GMS Reference Guide
for details.

Example

if (ServerValidUser("MyDSN","Joe","joesPassword"))
{

Print("DSN, User and Password are valid.
");
}

See also

ODBCInstalled, ServerDSNExists
268 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ServiceStart

ServiceStart starts a Gordano service.

ServiceStart(Service)

 Parameters

Service is POST, SMTP, IMAP, POP or LIST or any other service.
Specify it as a text name instead of, for example, SMTP_SERVICE.

Returns

TRUE — if the service starts successfully, or was already running.

FALSE — if it takes more than 60 seconds to start the service.

Remarks

If the service is already running the function returns immediately,
returning TRUE.

Example

if (ServiceStart("SMTP"))
{
 Print("Started SMTP service.
");
}

Result
Started SMTP service.

See also

AddSession, ServiceStop

This does not apply to Windows 95 or Windows 98.

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 269

Functions MML Programmer’s Guide
ServiceStatus

ServiceStatus determines whether a Gordano service is running.

tf = ServiceStatus(service)

Parameters

Service is POST, SMTP, IMAP, POP or LIST or any other service.
Specify it as a text name instead of, for example, SMTP_SERVICE.

Returns
• TRUE — the service is running.
• FALSE — an error occurred or the service is not running.

Example

if (ServiceStatus("SMTP"))
{

Print("SMTP service running.
");
}

Result
SMTP service running

See also

AddSession, GetStatus, ServiceStart, ServiceStop

This does not apply to Windows 95 or Windows 98.

Only a verified account can use this function.
270 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ServiceStop

ServiceStop stops the specified Gordano service.

ServiceStop(service)

Parameters

Service is POST, SMTP, IMAP, POP or LIST or any other service.
Specify it as a text name instead of, for example, SMTP_SERVICE.

Returns

TRUE — if the service stops successfully.

FALSE — if it takes more than 60 seconds to stop the service.

Remarks

If the service is currently not running, the function returns straight
away, returning TRUE.

Example

if (ServiceStop("SMTP"))
{
 Print("Stopped SMTP service.
");
}

Result
Stopped SMTP service.

See also

AddSession, ServiceStart

This does not apply to Windows 95 or Windows 98.

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 271

Functions MML Programmer’s Guide
SetHTTPCacheable

SetHTTPCacheable sets the current connection cacheable flag.

SetHTTPCacheable(value);

Parameters

value

true or false.

Returns

Nothing.

Example

setHTTPCacheable(1)

Result

Makes the current connection cacheable.
272 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
SetHTTPCookie

SetHTTPCookie installs a cookie on the client machine containing
useful information for retrieval at the next visit.

SetHTTPCookie(GordanoSearchString,data[,ExpiryDate,path,domain]
);

Parameters

GordanoSearchString

The string that GetHTTPCookie will search for when
retrieving the cookie.

data

Any information you want to store in the cookie.

ExpiryDate

The date at which the cookie expires. If this is passed then
the cookie won’t be retreived.

path

Optional. The Path attribute specifies the subset of URLs to
which this cookie applies. Set this to "/" to allow the
cookie’s use through the whole site.

domain

Optional. The Domain attribute specifies the domain for
which the cookie is valid. An explicitly specified domain
must always start with a dot.

Returns

Nothing.

Example

SetHTTPCookie("GordanoSignon",signoninfo,"Fri, 01-Jan-2010 00:00:00
GMT","/");

Result

Creates a cookie on the client’s machine which can then be
retreived using GetHTTPCookie. Note that clients can be configured
not to allow the setting of cookies.

See also

GetHTTPCookie
 Gordano Ltd, 1995-2015 273

Functions MML Programmer’s Guide
SetHTTPResponseStatus

SetHTTPResponseStatus forces the HTTP response code and
message to the values specified.

SetHTTPResponseStatus(errorcode, "error description");

Parameters

errorcode

The HTTP error code appropriate to the current status

error description

Short text summary of the error encountered.

Returns

Nothing

Example
def PrintErrorPage(information)
 {
 SetHTTPResponseStatus(404, "Not Found");
 print("<h1>404 Not Found</h1>\r\nThe server was unable to process the
request.<p>The error received was: ", information, "<p>\r\n");
 print("Please contact the system administrator");
 }

 if (pagecontents == "")
 {
 PrintErrorPage("no data");
 end;
 }

See also

AddHTTPResponseHeader
274 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
SetLogType

SetLogType sets the log type for the current connection.

SetLogType(logtype);

Parameters

logtype

defines which log file log entries for the www service should
be written to

DEFAULT_LOG = WW log

WEBMAIL_LOG = WM log

DIALUP_LOG = DU log

Returns

Nothing

Example
SetLogType(WEBMAIL_LOG);
 Gordano Ltd, 1995-2015 275

Functions MML Programmer’s Guide
SetMemberRecord

SetMemberRecord sets information about a member.

SetMemberRecord(db_handle,member_handle)

Parameters

Db_handle

The handle created by OpenMemberDb.

Member_handle

The handle created by GetMemberRecord (not
ReadNextMemberRecord).

Remarks

The database must be opened in read/write mode.

GetMemberRecord must be called before this function to
generate a member handle.

Returns

Nothing.

Example

This changes a single member’s record in the database:

mydb = OpenMemberDB("test.com\\testlist",FILE_READ);

if (mydb)
{
 mymember = GetMemberRecord(mydb,"xyz.com\lesleyf");

 if (mymember)
 {
 mymember\eyecolour = "blue";
 SetMemberRecord(mydb,mymember);
 }

 CloseMemberDB(mydb);
}

See also

OpenMemberDb, CloseMemberDb, GetAllMembers,
GetMemberRecord, ReadMemberRecord
276 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
SetPassword

SetPassword changes an account’s password.

SetPassword(account,domain,old_password,new_password)

Parameters

Account

The account’s name.

Domain

The account’s domain.

Old_password

The current password.

New_password

The password which is to replace the existing password.

Returns

TRUE if the password is changed successfully, otherwise FALSE. If
the old password given is invalid, the function fails.

Remarks

You can change the passwords of SAM database users too.

Example

This changes Joe’s password from "wh1sky" to "cat4dog":

SetPassword(joe,test.dom,wh1sky,cat4dog);

See also

AddSession, EncryptPassword

Only a verified account can use this function.
 Gordano Ltd, 1995-2015 277

Functions MML Programmer’s Guide
SetScriptPriority

SetScriptPriority changes the script thread priority to the specified
value.

SetScriptPriority(value)

Parameters

value

is the script thread priority to be applied. Can take one of
the following:

• script_priority_high
• script_priority_highest
• script_priority_normal
• script_priority_low
• script_priority_lowest

these map directly onto NT thread priorities. Thread
priorities are reset to normal when a script ends. All script
types start off as NORMAL.

Returns

Nothing

Example

SetScriptPriority(SCRIPT_PRIORITY_LOWEST);

See also

KillScript, ListRunningScripts
278 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
SetSessionLanguage

SetSessionLanguage Set the current session language to that
specified.

SetSessionLanguage(shortname)

Parameters

shortname

the short name for the language to be used

Returns

Nothing

Example

SetSessionLanguage("en-us");

See also

LanguageName, ConfiguredLanguages, DefaultLanguage, NLS
 Gordano Ltd, 1995-2015 279

Functions MML Programmer’s Guide
Sleep

Sleep pauses GMS for a given length of time.

Sleep(millisecs)

Parameters

Millisecs is the time to pause for in milliseconds.

Returns

Nothing.

Remarks

This is not usually used in Web page generation, only in scripts that
are timed (for example, a script which initialises an Internet
connection at a specific time).

The function stops the script for the specified time, but does not
release its resources etc.

Example

Sleep(24000);
280 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
SQLCreateDb

SQLCreateDb creates a SQL database.

SQLCreateDb(Createstmt,DSN,user,password,TableName,Columnlist)

Parameters

CreateStmt

The SQL statement to create a Database

DSN

The Data Source Name to use to connect to the database.

User

The username associated with the DSN

Password

The password associated with the DSN

TableName

The name of the table to create.

Columnlist

A list of columns to add to the table.

Returns

Nothing.

Example

table_created = SQLCreateDB("CREATE TABLE %s (%s int IDENTITY(1,1) PRIMARY KEY
NONCLUSTERED, %s char(20) NOT NULL, %s char(20) NOT NULL, %s int NOT NULL)",
"mydsn", "joe", "dsnpassword", "members", "UserID,UserName,Domain,Type");

if (!table_created)
 {
 print("failed to create DB");
 }

Result

Table members created with four fields. Note the first %s in the
CreateStmt is substituted with the Tablename when the function
runs, The other %s entries relate to the fields entered in columnlist.
i.e. the second %s relates to UserId, the third UserName etc. There
is no limit to the number of fields that can be added but the
CreateStmt has to be edited to tie up with the Columnlist. The
example above might be used with a custom ODBC type list as in
GLCommunicator.
 Gordano Ltd, 1995-2015 281

Functions MML Programmer’s Guide
SQLExec

SQLExec allows the execution of arbitrary SQL statements on a
predifined ODBC connection.

SQLExec(Datasource,Username,Password,Statement,MaxRows,RowS
ep,ColSep,ColumnNames,Rows);

Parameters

Datasource

Data Source Name (ODBC)

Username

Database username, if required

Password

Database password, if required

Statement

SQL statement to run (Select, Insert, etc)

MaxRows

Maximum number of rows to return, only required for a
select statement. To select all rows use -1.

RowSep

Character to use to separate rows in string (needs to be a
safe character, ie pipe, colon, space, etc)

ColSep

Character to use to separate columns in string (needs to be
a safe character, ie pipe, colon, space, etc)

ColumnNames

Variable to place column names into

Rows

Variable to place SQL results into.

Returns

Boolean True or False

Remarks

Example
<html>
<body>
<#
 def DoQuery(statement)
 {
282 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
 datasource = "xxxxxx";
 username = "xxxxxx";
 password = "xxxxxx";
 maxRows = -1;
 rowSep = "|";
 colSep = ":";

 ok = SQLExec(datasource, username, password, statement, maxRows, rowSep,
colSep, columnNames, rows);

 print("SQL statement is: ", statement, "
");

 if (!ok)
 {
 print("SQL Failed
");
 }

 length = LSLength(columnNames, colSep);

#>
 <table border=1>
<#
 for (i = 1; i <= length; i = i + 1)
 {
 col = URLDecode(LSElement(columnNames, i, colSep));

 print("<th>", col, "</th>");
 }

 length = LSLength(rows, rowSep);

 for (i = 1; i <= length; i = i + 1)
 {
 print("<tr>");

 row = LSElement(rows, i, rowSep);
 rowLen = LSLength(row, colSep);

 for (j = 1; j <= rowLen; j = j + 1)
 {
 col = URLDecode(LSElement(row, j, colSep));

 if (col == "")
 {
 col = " ";
 }

 print("<td>", col, "</td>");
 }

 print("</tr>\n");
 }
#>
 </table>

<#
 }

 DoQuery("show tables");

#>
</body>
 Gordano Ltd, 1995-2015 283

Functions MML Programmer’s Guide
Result

See also

SQLCreateDb
284 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
Time

Time returns the current time or outputs the time specified.

t = Time([hours, minutes, seconds])

Parameters

If no parameters are specified, the function returns the current time
to the nearest second.

If the parameters are specified, the function sets the system time to
that time. In this case the date portion will be set to 0000-00-00

Example

now = Time();
mydate = Time(12,30,0);
Print(now,"
");
Print(mydate,"
");

Result
1999-06-05
0000-00-00 12:30:00

See also

Date, DateTime, DateTimeFormat
 Gordano Ltd, 1995-2015 285

Functions MML Programmer’s Guide
TlsEnabled

TlsEnabled returns true if the tls dll is available. Required to enable
SSL (Secure Socket Layer) connections

n = tlsenabled()

Parameters

None

Returns

TRUE is the Transport Layer Security (tls) dll is available, otherwise
false.

Example

x = tlsenabled()
Print(x);

Result

1

286 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
ToInt

ToInt converts the specified variable to an integer.

n = ToInt(var)

Parameters

Var is the variable to convert. This is normally a string.

Returns

An integer.

Example

prep = "256";
prep1 = "1024";
n = ToInt("prep + prep1");
Print(n);

Result

1280

See also

IsInteger
 Gordano Ltd, 1995-2015 287

Functions MML Programmer’s Guide
Trim

Trim removes any "white space" (see below) from either end of a
string.

str = Trim(string[,chars])

Parameters

String

The string to remove characters from.

Chars

If present, this defines the characters that may be removed
from the string. If it’s not present, all "white spaces" are
removed.

Returns

A string.

Remarks

"White space" includes spaces, tabs, carriage returns and line
feeds.

Example

Print(Trim(" hello "),"
");
Print(Trim("aaahelloa","a");

Result
hello
hello

See also

Left, Right, Mid, Len
288 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
UrlDecode

UrlDecode decodes an encoded URL.

str = UrlDecode(string)

Parameters

String is the URL to decode.

Returns

The decoded string.

Remarks

This reverses the UrlEncode function.

This is not encoding/decoding as the term is used for passwords. It
means making the string URL-compliant.

Example

URLstring = URLDecode("Hello+world");
Print(URLstring);

Result

Hello world

See also

UrlEncode
 Gordano Ltd, 1995-2015 289

Functions MML Programmer’s Guide
UrlEncode

UrlEncode encodes a URL.

str = UrlEncode(string)

Parameters

String is the URL to decode.

Returns

This is not encoding/decoding as the term is used for passwords. It
means making the string URL-compliant.

Remarks

This reverses the UrlDecode function.

Example

URLstring = URLEncode("Hello world");
Print(URLstring);

Result

Hello+world

See also

UrlDecode
290 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
VerifyUser

VerifyUser checks that an account is valid.

VerifyUser(account,password)

Parameters

Account

The account name.

Password

The account’s password.

Returns

TRUE if the account is valid and its password is correct, otherwise
FALSE.

Remarks

If the account is "user", the function uses the connection’s IP
address for the domain name.

Example

if (!VerifyUser(dean@test.dom,wh1sky))
{
 Print ("He’s not verified");
}

See also

AddSession, DelSession.
 Gordano Ltd, 1995-2015 291

Functions MML Programmer’s Guide
WeakDecryptValue

WeakDecryptValue decrypts a value encrypted using
WeakEncryptValue.

str = WeakDecryptValue(string)

Parameters

String is the text to decrypt.

Returns

A string holding the non-decoded value.

Remarks

This is not the secure encoding/decoding used for passwords.

Example

Print(WeakDecryptValue("5J%25XiVPd6x8%296eP8iJA3"));

Result

simon@test.dom

See also

WeakEncryptValue
292 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
WeakEncryptValue

WeakEncryptValue encrypts a plain text value.

str = WeakEncryptValue(string)

Parameters

String is the text to encrypt.

Returns

A string holding the non-decoded value.

Remarks

This is not the secure encoding/decoding used for passwords.

Example

Print(WeakEncryptValue("simon@test.dom"));

Result

5J%25XiVPd6x8%296eP8iJA3

See also

WeakDecryptValue
 Gordano Ltd, 1995-2015 293

Functions MML Programmer’s Guide
WildcardFilterMsg

WildcardFilterMsg searches a message for one or more strings.

str = WildcardFilterMsg(msg,"string1,"string2",.....)

Parameters

Msg

The message structure.

Mask

A comma-separated sequence of up to 63 strings.

Returns

For each filter, a count of how many occurrences were found.

Remarks

The strings can contain wildcards although the use of wildcards
may significantly impact performance due to the extra work
involved.

Example 1

In this example Fred appears in the message five times and "Joe*"
eight times. The name Lou is not in the message:

WildcardFilterMsg(msg,"Fred","Joe*","Lou");

Result

5 8 0

Example 2

If you want to filter out messages with .vbs, .exe extensions for
example the following might be useful.

x = WildCardFilterMsg(msg, "bat", "vbs", "exe");
if (LSElement(x,1) > 0 || LSElement(x,2) > 0 ...)
{
 reject using "Action" or do other stuff
}

See also

FilterMsg
294 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Functions

Copyright ©
WildCardMatch

WildCardMatch compares two strings, one of which contains
wildcards.

tf = WildCardMatch(match, string)

Parameters

Match

The string to look in.

String

A string with wildcards.

Returns

TRUE if the first string matches the string which contains the
wildcards, otherwise FALSE.

Example

Print(WildcardMatch("JoeBloggs.mbx","Joe*.mbx"));

Result

1

See also

Match
 Gordano Ltd, 1995-2015 295

Functions MML Programmer’s Guide
WordWrap

Wordwrap applies word-wrapping to the text specified.

tf = WordWrap(text, limit[,inserttext])

Parameters

text

The text to be wrapped.

limit

The character position at which to invoke the wrap.

inserttext(optional)

text to be entered at the insert point the default is "\r\n"

Returns

The wrapped text.

Example

x = wordwrap("This is a piece of text that needs to be word-wrapped","20","
");
print(x);

Result

This is a piece of
text that needs to
be word-wrapped

296 Copyright © Gordano Ltd, 1995-2015

Copyright ©
6 Constants
The following constants are used by MML:

Constant Value

ACCESS_RIGHT_DOMAIN 1

ACCESS_RIGHT_GUEST 6

ACCESS_RIGHT_JUCE 3

ACCESS_RIGHT_LOG 5

ACCESS_RIGHT_SUPPORT 2

ACCESS_RIGHT_SYSTEM 4

AccountTypeAlias 0

AccountTypeAutoResponder 7

AccountTypeDLL 6

AccountTypeForward 2

AccountTypeList 3

AccountTypeListAll 14

AccountTypeListManager 5

AccountTypeMailbox 18

AccountTypeMoved 8

AccountTypeNTDatabase 15

AccountTypeNTMail 1

AccountTypeRobot 9

AccountTypeScript 16

AccountTypeSuperList 4

AccountTypeTemplate 10

AccountTypeTranslate 13

AccountTypeVirtualPOP 11

ALL_SERVICE 9

DomainTypeDLL 16

DomainTypeFull 1

DomainTypePOP 2

DomainTypeRobot 4

DomainTypeVirtual 8

FALSE 0

FILE_APPEND 2

FILE_BINARY 4

FILE_READ 0

FILE_TEXT 3

FILE_WRITE 1

FOLDER_MSG_ANSWERED 0

FOLDER_MSG_DELETED 2

FOLDER_MSG_DIGEST 1
 Gordano Ltd, 1995-2015 297

Constants MML Programmer’s Guide
FOLDER_MSG_DRAFT 3

FOLDER_MSG_FLAGGED 4

FOLDER_MSG_MODERATED 5

FOLDER_MSG_POSTED 6

FOLDER_MSG_READ 7

FOLDER_MSG_RECENT 8

FOLDER_MSG_SEEN 9

FOLDER_MSG_WARNING 10

JOIN_LIST_COMMAND 1

KEY_CUSTOMER 501

KEY_IS_DEMO 402

KEY_PRODUCT_ACTIVE 403

KEY_PRODUCT_NAME 500

KEY_USERS 400

KEY_USERS_PER_LIST 401

LEAVE_LIST_COMMAND 2

LEAVE_REASON_BAD_MESSAGE_LIMIT 3

LEAVE_REASON_BANNED 2

LEAVE_REASON_EXPIRED 0

LEAVE_REASON_MEMBER 1

LINUX 4

LIST_ACCESS_ALLOWED 0

LIST_ACCESS_MODERATE 2

LIST_ACCESS_PASSWORD 3

LIST_ACCESS_SELFONLY 1

LIST_PARM_ACCESS_ANYONE 3

LIST_PARM_ACCESS_FILE_ANYONE 6

LIST_PARM_ACCESS_FILE_ONLY 7

LIST_PARM_ACCESS_MEMBER_ANYONE 4

LIST_PARM_ACCESS_MEMBER_ONLY 5

LIST_PARM_ACCESS_MEMBER_PASSWORD_ANYONE 10

LIST_PARM_ACCESS_MEMBER_PASSWORD_ONLY 11

LIST_PARM_ACCESS_MODERATOR 13

LIST_PARM_ACCESS_NO_ACCESS 1

LIST_PARM_ACCESS_ONLY 2

LIST_PARM_ACCESS_PASSWORD_ANYONE 8

LIST_PARM_ACCESS_PASSWORD_ONLY 9

LIST_PARM_ACCESS_WILDCARD 12

LIST_PARM_ACTIVE 1

LIST_PARM_DO_NOTHING 1

LIST_PARM_INDEX_DIGEST_STR 3

Constant Value
298 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Constants

Copyright ©
LIST_PARM_MIME_DIGEST_STR 2

LIST_PARM_ODBC_RO_TYPE 3

LIST_PARM_ODBC_TYPE 2

LIST_PARM_PAUSED 3

LIST_PARM_STOPPED 2

LIST_PARM_SUSPEND_IGNORE 6

LIST_PARM_SUSPEND_TO_ADDRESS 9

LIST_PARM_SUSPEND_TO_MODERATOR 8

LIST_PARM_SUSPEND_TO_OWNER 7

LIST_PARM_TEXT_DIGEST_STR 1

LIST_PARM_TO_ADDRESS 5

LIST_PARM_TO_MODERATOR 3

LIST_PARM_TO_OWNER 2

LIST_PARM_TO_SENDER 4

LIST_PARM_V4_FILE_TYPE 1

LOG_DNS 512

LOG_FAILURE 2

LOG_JUCE 131072

LOG_PROGRESS 4

LOG_PROTOCOL 256

LOG_RETURN 8

LOG_SPAM 4096

LOG_STATS 16

MEMBER_TYPE_BANNED 2

MEMBER_TYPE_BEING_MODERATED 3

MEMBER_TYPE_CONFIRM 4

MEMBER_TYPE_DELETE 7

MEMBER_TYPE_JOIN_EXPIRED 5

MEMBER_TYPE_MEMBER 0

MEMBER_TYPE_OLD 1

MEMBER_TYPE_ZOMBIE 6

MSG_DROP 0

MSG_QUEUE 2

MSG_SEND 1

NTMAIL_INSTALL_DIR C:\Gor-
dano\

PasswordPolicyDigit 0

PasswordPolicyLetter 1

PasswordPolicySymbol 2

POST_SERVICE 2

PRODUCT_JUCE 4

Constant Value
 Gordano Ltd, 1995-2015 299

Constants MML Programmer’s Guide
Example

AccountTypeNTDatabase is shown as 15.

TheAccountType is a bitmap and various bits are enabled or
disabled depending on what settings are required.

The values are shown in the registry in their decimal form in the
user space.

The bits are always worked in binary so to write bit 15 you would
use

1000000000000000 binary.

If you convert this to decimal you get a value of 32768

AccountTypeMailbox is set to 18 and is required to enable a
mailbox for the user. Writing this in binary gives
1000000000000000000 or in decimal a value of 262144.

32768 + 262144 = 294192

Therefore a value of 294192 indicates that the user is an NT
Database user and that the mailbox is enabled for that user.

PRODUCT_NTLIST 2

PRODUCT_NTMAIL 1

PRODUCT_VIRUS_SCANNER 3

PROXY_PURGE_CREATED 0

PROXY_PURGE_LAST_USED 1

RESUME_LIST_COMMAND 18

RFC822_ADD_FROM 1

RFC822_ADD_TO 2

RFC822_ADD_TO_ALWAYS 3

RFC822_STRICT 0

SMTP_SERVICE 3

SOLARIS 3

SUSPEND_LIST_COMMAND 17

TRUE 1

WIN95 2

WINNT 1

WWW_SERVICE 7

Constant Value
300 Copyright © Gordano Ltd, 1995-2015

Copyright ©
7 Troubleshooting
This chapter shows to solve problems you may encounter as you
learn to write MML scripts. It describes:
• What happens when a script fails — how the failure is

reported.
• Advice on debugging your scripts.
• A list of error messages you may see, with advice on how to fix

many of the problems.
 Gordano Ltd, 1995-2015 301

Troubleshooting MML Programmer’s Guide
7.1 Diagnostics

An error will appear in your Web browser. The following is the first
part of the output from a failed script:

An error has occured - Function undefined (1009)

Current location:
2: \Dialup\RuleConfigAdv.mml
1: \Dialup\RuleProcess.mml

Location in \Dialup\RuleConfigAdv.mml:

 6 MenuTitle = "Connection scheduling";
 7
 8> lstRAS = EnumRasEntries();
 9 nLen = LSLength (lstRAS);
 10

This is followed by a debug list of local, session and form variable
values. For example, the form variables section will resemble this:

Form Variables
Variable Name Value
action New schedule
HTTP_Accept image/gif,image/x-xbitmap,image/
 jpeg, image/pjpeg, */*
HTTP_Accept_Charset iso-8859-1,*,utf-8
HTTP_Accept_Language en
HTTP_Connection Keep-Alive
HTTP_Content_length 21
HTTP_Content_type application/x-www-form-urlencoded
HTTP_Host 127.0.0.1:8000
HTTP_Referer http://127.0.0.1:8000/Dialup/
 Rule.mml?Change
 Open=Dialup&ChangeTabIndex=1
HTTP_User_Agent Mozilla/4.01 [en] (WinNT; I)
LOCAL_ADDR 127.0.0.1
LOCAL_HOSTNAME 127.0.0.1
REMOTE_ADDR 127.0.0.1
REMOTE_HOSTNAME 127.0.0.1
SCRIPT_LENGTH 15988
SCRIPT_NAME /Dialup/RuleProcess.mml
SERVER_NAME InternetShopper
SERVER_PORT 80
SERVER_PORT_SECURE 0
SERVER_PROTOCOL HTTP/1.0
SERVER_SOFTWARE InternetShopper

7.2 List of Script Errors

This section lists all the errors which you may see, with information
on how to fix the more complex problems. Any of these errors will
report the message “500 Server error indicated”.

Syntax error
302 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Troubleshooting

Copyright ©
Unbalanced parentheses

No expression present

Equals sign expected

Not a variable

Parameter error

Semicolon expected

Unbalanced braces

Function undefined

Too many nested function calls

Return without a call

Parentheses expected

While expected

Closing quote expected

Not a string

Too many local variables

Too many function arguments compared with definition

Too few function arguments compared with definition

Strings may not extend over an end-of-line

String is too long

Number is too long

Function requires n parameters

Function, resolved variable or variable name is too long

Hashes unmatched during variable resolution

Domain does not exist

User does not exist in this domain

Cannot add users to this type of domain

Cannot change a constant value

Cannot create a domain of this type

Open Brace expected but not found

Braces not allowed in expression

ODBC Driver reported an error

Variable is not of type MSG

Variable is not of type FILE

File sharing violation

Unexpected end of MML
 Gordano Ltd, 1995-2015 303

Troubleshooting MML Programmer’s Guide
Bad value

Extra open script command was unexpected

Extra close script command was unexpected

Division by zero

Could not find name of file to include

Too many nested includes

No file found

Variable name cannot be the same as a function name

File type or mode was not recognised

Invalid operator in expression

Variable is not of type FOLDER

The Variable is read only

The end of the message has been found

The system has run out of memory

Too many function definitions

Invalid filename

The function has been already been defined

Operation not allowed by current user
304 Copyright © Gordano Ltd, 1995-2015

Copyright ©
8 FAQs and Examples

8.1 Example Robots

The Gordano Accessory pack contains a number of examples of
MML usage including three example robots

Filter robot.

This robot is designed to be used as a user delivery script. Paste the
contents of the file filter.mml into the Users\DeliveryScript tab in the
Gordano interface. The robot provides examples of how to filter
messages and perform various actions on the messages. The
filtering looks in the subject of the message of based on it will
either copy, transfer, forward, redirect, reply or delete the message.

Template robot.

This robot is designed to be used as a user delivery script. Paste the
contents of the file template.mml into the Users\DeliveryScript tab
in the Gordano interface. The robot provides functionality similar to
the template processing provided by template accounts in SMTP.
The following templates are supported:

%subject% The subject of the original message
%date% The date of the original message
%from% The sender of the original message
%to% The recipient of the original message
%header% The header of the original message
%body% The body from the original message. Note that these
can be very large.

The script makes every attempt to avoid mail loops by checking for
the null account.

Admin robot.

This robot is designed to be used as a user delivery script. Paste the
contents of the file filter.mml into the Users\DeliveryScript tab in the
Gordano interface. The robot provides “Administration via email”
functionality. Addition and deletion of accounts is supported.
Access is password protected. The format of the message is:

Password= <admin robot password>

Add fred fredpassword
Add barney barneypassword

Delete wilma
Delete betty
Gordano Ltd, 1995-2015 305

FAQs and Examples MML Programmer’s Guide
8.2 Example Timed Events

A single example timed event is provided in the Gordano accessory
pack. The contents of the file should be pasted into a timed event
added via the system>timed events page of the Gordano interface.
It will simply zip up a mailbox for a given user and send it to
another user.

8.3 Example User Defined GUI

A user definable GUI is included in the Gordano Accessory Pack. To
install the GUI these files should be extracted into \mml\usr. The
GUI can be accessed by connecting to the GMS server on port
8888. The GUI allows you to send and receive email and to
configure an autoresponse. Once installed you can edit the
appearance of this GUI to your preference.

8.4 What is an API?

An API or Application Programming Interface, allows programmers
to access the functionality of a pre-built software module through
well-defined data structures and subroutine calls.

Traditionally the most popular networking APIs have accompanied
socket libraries. Berkeley sockets and Windows Sockets (Winsock)
APIs have seen widespread use for many years. More recently, Java
network APIs such as servlets have also grown in popularity.

Gordano provides many API’s to allow you to modify the product
behaviour. These include
• The Mail Meta Language, MML (a powerful scripting language)

which allows the customisation of functions throughout the
Gordano product range.

• SMTP clause DLL.
• An authentication DLL..
• Message DLL.

8.5 What is MML?

MML stands for Mail Meta Language, and is a powerful scripting
language designed specifically for the handling of Internet mail.
MML is unique to Gordano products.
306 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide FAQs and Examples

Copyright ©
8.6 What is a script?

A script is a list of commands that can be executed without user
interaction. A script language is a simple programming language
with which you can write scripts. A script is processed by an
interpreter.

Gordano’s products support the Mail Meta Language (MML)
scripting language. Designed in house by the Gordano developers
this scripting language is specifically designed to assist with the
processing of Internet mail messages.

There are four types of scripts that can be written in MML, these
are:
• GUI Scripts - These scripts are used to provide custom

interfaces.
• GMS Anti-Spam Scripts - These interact with messages

passing though the server.
• Timed Event Scripts - initiate an event at a specified time. For

example to dial up to your ISP or to back up your system.
• List Messages containing executable MML – these mix

HTML and Text with embedded MML.

8.7 Examples

Can I move all messages over a certain size to a particular
account?

If you want to take a copy of all messages over a certain size and
send them to a particular account you could use an EOM Script, the
following is an example of such a script.

if (email\X-MMLScript == "" && email\size > 10240)
{
 action = "-1";
 rcpt = "postmaster@test.dom";
}

To enter an EOM Script you need to be running GMS Anti-Spam.

Can I copy messages over a certain size to another account?

To do this you can run a delivery script on the user account that you
want this to affect, an example of a such a script would be

if (email\X-MMLScript == "" && email\size > 10240)
{
 msg = MsgCopy(email);

 if (msg)
 {
 MsgAddHeader(msg, "X-ByWayOf", rcpt);
Gordano Ltd, 1995-2015 307

FAQs and Examples MML Programmer’s Guide
 MsgAddHeader(msg, "X-MMLScript", "Failed");
 msg\recipient = "postmaster@test.dom";
 MsgClose(msg, MSG_SEND);
 }
}

If you wanted to copy the message to another account while
discarding the message to the original recipient you need to add an
“Action” to the script, as in the following example

if (email\X-MMLScript == "" && email\size > 10240)
{
 action = 1;

 msg = MsgCopy(email);

 if (msg)
 {
 MsgAddHeader(msg, "X-ByWayOf", rcpt);
 MsgAddHeader(msg, "X-MMLScript", "Failed");
 msg\recipient = "postmaster@test.dom";
 MsgClose(msg, MSG_SEND);
 }
}

How can I stop the Love Bug virus with GMS?

Please find an MML script below that will trap the “I Love You”
virus in SMTP before getting into your system. You do not need the
virus scanner package to use this but you will need GMS Anti-
Spam.

In the GMS Anti-Spam administration interface go to the
“Connect” option, select the “Scripts” tab and add a new script.
The script type to add is “End Of Message” and you should paste
the MML below directly into the text area. Once you've added the
script you should see the script listed. You will need SMTPScripts to
be turned on to use this script - this will be enabled when you add
the script.

That's all you should need to do. This is better than using the the
GMS Anti-Spam content filters as it will happen earlier within SMTP
and is guaranteed to always be executed.

The script is self explanatory and could be easily modified to spot
the new variants of the virus as they occur or indeed completely
different viruses.

-- MML Starts below

if (email\X-MMLScript == "")
{
 if (email\Subject == "ILOVEYOU")
308 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide FAQs and Examples

Copyright ©
 {
 x = FilterMsg(email, "LOVELETTER", "name=\"LOVE-LETTER-FOR-
YOU.TXT.vbs");

 if (LSElement(x, 1) != 0 && LSElement(x, 2) != 0)
 {
 action = 1;
 parameter = "550 ILOVEYOU virus found in message";
 }
 }
}

Can I Customise List Postings when the list members are held
in a database?

I have a database with several hundred thousand member entries. I
want to send out a message but I want different groups of
members to get different messages. Specifically I want to easily
include in the message different URLs where that URL is made up of
details included in that person's database record. E.g.
user1,1234,abcd gets the URL
http:\\www.mysite.dom\1234abcd.htm

This is an extremely good example of just what GMS
Communication Server can do.

If you have your information in a database table, it might have
columns like:

When an email message is sent to a list with associated with this
database table, it might have the following MML code in it:

EG>
EG> Hi <# print(user); #>,
EG>
EG> Please click on this URL:
EG> http://mysite.dom/page1/item.htm?id=<# print(ItemA,
"&x=", ItemB); #>
EG>

When this is sent to the list, it would end up being customised for
each list member according to the fields in the database table:

Domain
gordano.com
GMS.co.uk

User
support
user

Item
A
asdf
iei

ItemB
93
3

Gordano Ltd, 1995-2015 309

FAQs and Examples MML Programmer’s Guide
EMAIL1>
EMAIL1> Hi support,
EMAIL1>
EMAIL1> Please click on this URL:
EMAIL1> http://mysite.dom/page1/item.htm?id=asdf&x=93
EMAIL1>

EMAIL2>
EMAIL2> Hi user,
EMAIL2>
EMAIL2> Please click on this URL:
EMAIL2> http://mysite.dom/page1/item.htm?id=iei&x=3
EMAIL2>

Can I Customize Mail Outs Using GMS Communication Server
or GMS List Server?

I want to use a list that I have set up to send a message to certain
members of that list but not to others. Can this be done and if so
how?

This is done using MML (Mail Meta Language) and the “Action”
variable. For example suppose you want to post to just the list
members whose e-mail address begins with “s”. To do this you
would first have to enable MML by going to Post > processing in
the interface and where it says “Execute MML within posted
messages” select “Whole Message” from the drop down and click
on update. Next you need to post a message containing the
following script:

<# If (left(RCPT, 1) != "s" ;
Action = 2; #>
Your message goes here.

Now only members whose e-mail address begins with “s” will
receive the message.

Action Variable Values:
Action = 0 continue the message (default)
Action = 1 retry sending the message later
Action = 2 Never send this message. Delete it from the queue so
that we don't try to send it again later. No automatic failure (or
bounce) message will be generated.

How do I put scripts into list footers?

All Gordano products have an internal scripting language called
“MML” or Mail Meta Language. This language is simple but
extremely powerful. GMS Communication Server will allow MML to
310 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide FAQs and Examples

Copyright ©
be included in the Header/Footer region of messages or anywhere
in the message.

First create your list - for example test@test.dom. Proceed to the
“GLCom>Post>Processing” page, change “Execute MML within
posted messages” to “Headers and Footers” and press update.
Press the “EDIT” button to allow you to change the footer of your
message. The footer is added to every message as it is posted
through GMS Communication Server. In the “footer” section, enter
the line:

<# print("You joined on ", DateJoined); #>

and press UPDATE. Add some users to the list (you could use
GMSComm > Manage > Import to do this) and then post a
message to the list.

Result: Check the message that has been delivered to one of the list
members and you should see the following line added to the
bottom (with a different date)!

You joined on 1999-09-03 11:20:53

Notes: There are several other variables that could have been used,
for example:

How can I use MML to tell if a message has an attachment?

Is there a way I can detect the presence of an attachment on an
incoming message so I can make an auto-responder to tell people
to use PUT instead.

You can use the email object to check the content-disposition of
the message which will show whether it has an attachment. For
example:

RCPT Where the message is being delivered to.

MAIL Who sent the message.

NumBadMsg
s

Number of messages returned to the mailing list by
this user.

Name If the name could be obtained from the email
message, the name of the person on the list.

Organization If the organisation is specified in the email message,
this will be the name of the organisation that the
person belongs to.
Gordano Ltd, 1995-2015 311

FAQs and Examples MML Programmer’s Guide
disp = Trim(email\Content-Disposition);

if (disp != "" && disp != "inline")
{
 if (Instr(disp, "attachment;") || Instr(disp, "filename")))
 {
 /* Do whatever you need */
 }
}

Why do messages get through MML filters?

The MML filter is set up to look for multiple occurences of a specific
word and to ban emails where the occurence of this word exceeds
the given number.

Imagine a filter that checks for a word "banned" occuring 5 times
in an incoming message. This creates the following script

if (email\X-MMLScript == "")
{

action = 0;
if (action == 0)
{

x = FilterMsg(email, "banned");
if (LSElement(x,1) > 4)
{

action = "1";
parameter = "550 contains disallowed word";

}
}

}

If the word "banned" occurs 9 times or less in the message, the
script functions correctly, and the mesage is rejected with the error
"550 contains disallowed word".

However if the word "banned" exists greater than 9 times in the
message it will pass through the script and will not be rejected.

This is because the MML parser is designed to treat this as a string
comparison, as the result of LSElement is a string. Consequently if it
finds 10 occurences of the word, this is equivalent to finding it one
time.

To correctly trap and reject these messages you need to use an
integer comparison and hence should use the ToInt MML function
to convert the result of LSElement to an integer which will then be
correctly used in comparisions.

This means that the line:
if (LSElement(x,1) > 4)

in the script above will become
if (ToInt(LSElement(x,1)) > 4)
312 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Licence Agreements

Copyright ©
Licence Agreements
GORDANO LIMITED SOFTWARE LICENCE AGREEMENT

Copyright © Gordano Ltd, 1995-2015

WARNING: YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS
BEFORE USING THIS SOFTWARE PACKAGE. INSTALLING THE SOFTWARE ONTO YOUR
COMPUTER INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF
YOU DO NOT WISH TO ACCEPT ALL OF THESE TERMS, YOU SHOULD STOP INSTALLING
THIS SOFTWARE NOW AND DESTROY ALL COPIES OF THE SOFTWARE AND ALL MANU-
ALS AND OTHER DOCUMENTS SUPPLIED WITH IT.

1 DEFINITIONS
"Agreement" means this Gordano Limited Software Licence Agreement together with
all related invoices.
"Company" means the licensee of the Software, being the signatory to this Agreement.
"Gordano" means Gordano Limited.
"Documentation" means any documentation or manuals provided with the Software or
provided Online or on storage media containing this text.
"Key" means the activation key.
"Software" means the software computer program, Key and Documentation contained
in this package.
"Trial Period" means the period of 28 days from installation of the Software.
2 GRANT OF LICENCE
2.1 Subject to the Company's compliance with the terms of this Agreement, Gordano
grants to the Company a non-exclusive, non-transferable licence to use the Software
strictly for its own internal business operations only under the terms of this Agreement
for the Trial Period and thereafter if a key is purchased from Gordano or its authorised
representatives. For the avoidance of doubt, operating the Software outside the Trial
Period or without a Key from Gordano (or its representatives) constitutes unlicensed use
of the Software and will be a material breach of this Agreement, which would allow
Gordano to terminate under clause 8.2.
2.2 This Agreement becomes effective upon the Company signing this Agreement or
installing the Software.
2.3 On expiry of the Trial Period and on payment of the fee invoiced by Gordano, the
Company will be sent the Key which will activate the Software.
2.4 The Company may use the Software on the number of computers that it has
purchased a licence for; a separate license is required for any other computers. The
number of licenses purchased by the Company under this Agreement will be stated on
the invoice issued by Gordano.
2.5 The Company may make one copy of the Software, strictly for backup or archive
purposes only.
2.6 The Company shall be responsible for all use of the Software licenced under this
Agreement, including but not limited to any use by its agents, contractors, outsourcers,
customers and suppliers, and their compliance with this Agreement.
2.7 The Company agrees to maintain accurate and adequate records relating to its use of
the Software and compliance with this Agreement. The Company agrees to permit
Gordano to audit the Company in relation to its use of the Software and compliance with
the terms of this Agreement. The Company shall provide Gordano with reasonable
assistance and access to information in the course of any such audit, and the Company
agrees that Gordano may report the audit results to its licensors. Each party shall be
responsible for its own costs in relation to any such audit.
Gordano Ltd, 1995-2015 313

Licence Agreements MML Programmer’s Guide
2.8 In the event that the Software contains source code from a licensor of Gordano, that
source code shall also be governed by the terms of this Agreement.

3 OWNERSHIP OF THE SOFTWARE

3.1 Gordano and its licensors own all title and proprietary rights to the Software and all
copies thereof and all rights therein, including without limitation all copyright, patents,
know-how, trade secrets, trade marks or names and database rights. All such rights shall
remain vested in Gordano and its licensors. The provision of the Software to you does not
grant, and you do not receive, any rights under any Microsoft intellectual property with
respect to any device or software that you use to access the Software.

3.2 The Company undertakes and agrees as follows:

(a) it may NOT make or permit others to make any copies of the Software except for one
backup copy.
(b) it may NOT reverse engineer, disassemble, decompile the Software or attempt to
reconstruct, identify or discover any source code except as expressly permissible by law.
(c) it may NOT modify, adapt or translate the Software or incorporate the Software, in
whole or in part in any other product or software or permit others to do so without
express, written consent of Gordano.
(d) it may NOT disclose, provide or otherwise make available in any form the Software, its
functionality or any portion thereof, to any third party other than its employees without
the prior written consent of Gordano.
(e) it may NOT remove any copyright, trademark, proprietary rights, disclaimer or warning
notice included on or embedded in any part of the Software and the Company agrees to
diligently reproduce all copyright notice(s) and other proprietary notices of Gordano on
any authorised copy of the Software.
(f) it may NOT assign, sell, transfer (except for temporary transfer in the event of
computer malfunction), licence, sub-licence, rent, timeshare, lease or otherwise
redistribute the Software or its functionality to any third party without the written
permission of Gordano.
(g) it may NOT use the Documentation for any purpose other than to support its use of
the Software.
(h) it accepts that from time to time, the Software will send a message containing details
of the Key or Keys installed to Gordano and it agrees not to interfere with the delivery of
this message.
(i) its accepts, that Gordano may receive error messages from the Software installed on
the Company's system in the event that the Software fails for some reason (and that the
Company has the option to turn this off).
(j) it agrees to stop using all previous version of the Software immediately following an
upgrade.
(k) it may NOT use the Software for any subscription service, hosting or outsourcing.
(l) it may NOT publish any results of benchmark tests run on the programs.
(m) if appropriate, it must comply with all relevant import and export laws to ensure that
the Software or anything directly produced using the Software are not exported directly
or indirectly contrary to applicable laws.
(n) it agrees that any third party technology that may be appropriate or necessary for use
with some or all of the Software that is notified to the Company (whether via the
Documentation or otherwise) shall not be licensed to the Company under this
Agreement, but may be licensed as stated in the Documentation or as otherwise notified
to the Company.
(o) The Company shall ensure that its customers and/or employees (and any other
314 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Licence Agreements

Copyright ©
persons) that use the Software agree to and are bound by the following condition on
their right to access and use the Software: "The provision of the Software to you does
not grant, and you do not receive, any rights under any Microsoft intellectual property
with respect to any device or software that you use to access the Software."
3.3 No distribution licence or other rights are provided to the Company under this
agreement.
3.4 The Software may utilise Microsoft® Exchange ActiveSync, and the use of Microsoft®
Exchange ActiveSync is limited to internal use as part of hosting the Software for the sole
purpose of providing access by Microsoft® approved devices to email accounts of
employees or customers of the Company maintained by the Software.

The provisions of clauses 3, 4, 6, and 7 shall survive termination of this Agreement.

4 CONFIDENTIALITY

4.1 The Company undertakes to treat as confidential and keep secret all information
contained or embodied in the Software and Documentation supplied by Gordano.

5 ANTI-VIRUS

5.1 Gordano does not warrant that the Software is free from all known viruses and the
Company shall assume responsibility to take appropriate steps to ensure that the
Software is virus free and that the running of the Software will not damage or interfere
with the computer system on which the Software is used or any data or software which
may be used or stored on its computer system.

6 WARRANTY AND DISCLAIMER

6.1 The Company acknowledges that software in general is not error free and agrees that
the existence of such errors in the Software shall not constitute a breach of this
Agreement.
6.2 The Company further acknowledges that the Software has not been developed to
meet its specific individual requirements and that it is the Company's responsibility to
ensure that any use of the Software or the information contained on it is suitable for its
specific individual requirements.
6.3 THIS SOFTWARE IS PROVIDED 'AS IS'. GORDANO WARRANTS THAT THE SOFTWARE
WILL SUBSTANTIALLY COMPLY WITH THE SPECIFICATIONS SET OUT IN THE
DOCUMENTATION. EXCEPT AS STATED HEREIN AND TO THE EXTENT PERMITTED BY
LAW THE SOFTWARE IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A
PARTICULAR PURPOSE. GORDANO DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET THE COMPANY'S REQUIREMENTS OR THAT
THE OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE.
6.4 Gordano does not represent or warrant that the Software furnished hereunder is free
of infringement of any third party patents, copyrights, other intellectual property rights or
trade secrets. The Company waives any right to indemnification or other relief from
Gordano should the Software be found to be defective or to infringe any right of any
third party.
6.5 Nothing in this Agreement shall exclude or limit the liability of Gordano for death or
personal injury
Gordano Ltd, 1995-2015 315

Licence Agreements MML Programmer’s Guide
caused by its negligence or for any other liability which cannot by law be excluded.
GORDANO'S SOLE LIABILITY TO THE COMPANY FOR ANY CLAIM, DEMAND OR CAUSE
OR ACTION WHATSOEVER, AND REGARDLESS OF FORM OF ACTION, WHETHER IN
CONTRACT OR TORT, SHALL BE LIMITED TO REPLACEMENT OF THE PRODUCT OR
REFUND OF THE LICENCE FEE PAID FOR THE SOFTWARE. IN NO EVENT SHALL GORDANO
OR ITS LICENSORS BE LIABLE TO THE COMPANY FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES WHATSOEVER, INCLUDING BUT
NOT LIMITED TO LOSS OF ANTICIPATED SAVINGS, LOSS OF REVENUES, LOSS OF PROFIT,
LOSS OF BUSINESS, LOSS OF DATA OR DATA USE OR ECONOMIC LOSS OF ANY KIND.

7 LIMIT OF LIABILITY

7.1 In the event that any exclusion or limitation in clause 6 above is held to be invalid for
any reason and Gordano becomes liable for loss or damage that may lawfully be limited,
such liability shall be limited to the sum equivalent to a multiple of 3 (three) times the
total annual fee paid by the Company to Gordano for the licence of the Software.

8 TERMINATION OF LICENCE

8.1 Save in the event of any unlicensed use of the Software when the terms of this
agreement shall remain in full force and effect, the Company may terminate this
Agreement, at any time, by destroying or returning all copies of the Software.
8.2 Gordano may terminate this Agreement by written notice to the Company if the
Company is in default of any terms or conditions of this Agreement or if the Company
enters into any form of insolvency including without limitation liquidation, receivership,
voluntary arrangement, administration or is unable to pay its debts as they fall due.
8.3 On termination of this Agreement the Company agrees to discontinue all use of the
Software and destroy all copies of the Software in any form in its possession or control,
and if requested by Gordano certify in writing that such action has been taken. The
Company shall not be entitled to any refund of any monies or other consideration paid by
it.

9 SUPPORT

9.1 Gordano shall provide support for the first 28 days from your first contact with
Gordano or its representatives. First contact means the Company's representative's first
telephone call to Gordano, registration on the Gordano website, or installation of the trial
software from our website, whichever is the earlier.
9.2 On expiry of this 28 days the Company shall have the option of purchasing support
services from Gordano under the terms of the Support Agreement.

10 MAINTENANCE (Software Updates)

10.1 Gordano shall provide maintenance services in the form of updates to the Software
for the duration of the Software's licence term, commencing on the expiry of the Trial
Period and on the Company's receipt of the Key. Thereafter, the Company shall have the
option of renewing annual maintenance services (Software updates) from Gordano.
10.2 Maintenance services shall comprise of the provision of new versions of the
Software only as and when they become available, and no other maintenance services or
assistance is included.
316 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Licence Agreements

Copyright ©
11 GENERAL

11.1 If any provision of this Agreement is determined to be invalid or unenforceable, by
any court of competent jurisdiction it shall be deemed to be omitted and the remaining
provisions shall continue in full force and effect.
11.2 Gordano's waiver of any right shall not constitute a waiver of that right in the
future.
11.3 This Agreement shall be governed and construed in accordance with the laws of
England and both parties submit to the exclusive jurisdiction of the English courts, save in
respect of enforcement where the jurisdiction shall be non-exclusive.
11.4 This Agreement constitutes the entire understanding between the parties with
respect to the subject matter hereof. The Company agrees that any of Gordano's
licensors that are associated with the Software shall be a third party beneficiary of this
Agreement. All prior agreements, representations, statements and undertakings, oral or
written, between the Company and Gordano are hereby expressly superseded and
canceled.
11.5 All notices under this Agreement shall be in writing and shall be given by registered
or certified mail to the following address: Gordano Ltd, 1 Yeo Bank Business Park, Kenn
Road, Kenn, Clevedon, North Somerset,

BS21 6UW, UK.
Gordano Ltd, 1995-2015 317

Licence Agreements MML Programmer’s Guide
GORDANO LIMITED SUPPORT AGREEMENT

WARNING: YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS.
BY REGISTERING FOR SUPPORT SERVICES TO BE PROVIDED BY GORDANO YOU ARE
ACCEPTING THESE TERMS AND CONDITIONS. IF YOU DO NOT WISH TO ACCEPT ALL
OF THESE TERMS YOU SHOULD IMMEDIATELY NOTIFY GORDANO AND ANY SUPPORT
FEE YOU MAY HAVE PAID WILL BE REFUNDED FOR THE OUTSTANDING CONTRACT
TERM.

1 DEFINITIONS

“Business Days” means weekdays excluding weekends, and UK Bank and Public
Holidays and Gordano's training days (which will be notified to the Company in advance
and in any case will not be more than 3 (three) days in any one calendar year).
"Company" means the licensee of the Software.
"Gordano" means Gordano Limited.
"Key" means the activation key for the Software or Support Service.
"Software" means the software computer program and documentation licensed to the
Company from Gordano.
"Software Licence" means the software licence granting the Company a non-exclusive,
nontransferable licence of the Software.
"Support Fee" means the fees payable for the Support Service, which shall be in
accordance with Gordano's current price list as amended from time to time.
"Support Agreement" means this Gordano Limited Support Agreement.
"Support Service" means the support services provided by Gordano in relation to the
Software and as detailed in clause 3 of this Support Agreement.

2 GRANT

2.1 This Support Agreement is for the provision of Gordano's Support Service in respect
of the current version of the Software for the term of your subscription to the Support
Service commencing from the date of the commencement of your subscription for the
Support Service.
2.2 If further products are licensed from Gordano during the lifetime of this Agreement a
"top-up" fee may be added to extend this Support Agreement to cover the additional
products at the time of their purchase.
2.3 This Support Agreement becomes effective on the date you pay for the Support
Service.
2.4 Customers may register as users on the helpdesk at https://helpdesk.gordano.com
however this is not required in order to receive support.

3 SUPPORT SERVICES

3.1 Gordano shall provide the Company with the following Support Service:
(a) telephone support for the Software (currently on +44 (0)1275 340151):
(i) between the hours of 0900 to 17:00 or 14:00 to 2200 hours UK Time; or
(ii) between the hours of 0900 to 2200 UK Time; on all Business Days or
(iii) for 24x7 cover; telephone support shall be provided at all hours on all days
(b) email support for the Software at support@gordano.com or helpdesk@gordano.com.
3.2 Messages sent to and Support calls made to Gordano will be processed automatically
and
318 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Licence Agreements

Copyright ©
assigned a ticket ID. Gordano will send confirmation of these details to the creator of the
ticket.

3.3 All Support Services for the Software will be provided in the English language only.

4 EXCLUDED SERVICES

The Support Service supplied under this Agreement shall not include the provision of
Support Service in respect of:
(a) any version of the Software which is more than 24 months past its release date, except
at the discretion of a support engineer or the management of Gordano Ltd;
(b) any products or services which are not the Software or its components;
(c) training in the use of the Software;
(d) any development services;
(e) defects or errors resulting from any modifications or enhancements of the Software
made by any person other than Gordano;
(f) use of the Software other than in accordance with the documentation or operator
error;
(g) virus protection or bug fixes except in exceptional circumstances as advised by
Gordano, for example, when the system has been compromised by some external force
and there is no available workaround; or
(h) any circumstances beyond the reasonable control of Gordano, including (but not
limited to) any act of God, fire, flood, war, act of violence or any other similar occurrence
or failure or reduced performance of telecommunications networks or the internet.

5 COMPANY OBLIGATIONS

5.1 The Company agrees and undertakes:
(a) to ensure that the Software is used only in accordance with the documentation or
advice from Gordano, by competent trained employees only or by persons under their
supervision;
(b) not to alter or modify the Software in any way whatever nor permit the Software to
be combined with any other programs to form a combined work;
(c) not to request, permit or authorise anyone other than Gordano or its nominated third
parties to
provide any support services in respect of the Software;
(d) to co-operate fully with Gordano's personnel in the diagnosis of any error or defect in
the Software;
(e) if necessary, to make available to Gordano free of charge all information facilities and
services
reasonably required by Gordano to enable Gordano to provide the support services;
(f) to provide such telecommunication facilities as are reasonably required by Gordano for
testing and diagnostic purposes.

6 SUPPORT FEES

In consideration of the Support Services the Company shall pay the Support Fee in
advance to Gordano

7 TERMINATION

Gordano may terminate this Support Agreement by written notice to the Company if the
Gordano Ltd, 1995-2015 319

Licence Agreements MML Programmer’s Guide
Company is in default of any terms or conditions of this Support Agreement by written
notice to the Company or if the Company enters into any form of insolvency including
without limitation liquidation, receivership, voluntary arrangement, administration or are
unable to pay its debts as they fall due.

8 LIABILITY

Gordano's sole liability to the Company for any claim, demand, cause or action
whatsoever, and regardless of form of action, whether in contract or tort, including
negligence, shall be limited, at Gordano's sole option, to refund of the purchase price, re-
performance of the Support Service or an extension to the length of the Support Service
to be provided. In no event shall Gordano be liable for recovery of any special, indirect,
incidental, or consequential damages, even if Gordano has been advised of the possibility
of such damages, including but not limited to lost profits, lost savings, lost revenues, lost
business, lost data or economic loss of any kind, or for any claim by any third party.

9 LIMIT OF LIABILITY

In the event that any exclusion or limitation in clause 8 above is held to be invalid for any
reason and Gordano becomes liable for loss or damage that may lawfully be limited, such
liability shall be limited to the sum equivalent to a multiple of three times the Support
Fees paid by the Company to Gordano.

10 GENERAL

10.1 If any provision of this Support Agreement is determined to be invalid or
unenforceable, by any court of competent jurisdiction it shall be deemed to be omitted
and the remaining provisions shall continue in full force and effect.
10.2 Gordano's waiver of any right shall not constitute a waiver of that right in the
future.
10.3 This Support Agreement shall be governed and construed in accordance with the
laws of England and both parties submit to the exclusive jurisdiction of the English courts,
save in respect of enforcement where the jurisdiction shall be non-exclusive.
10.4 This Support Agreement constitutes the entire understanding between the parties
with respect to the subject matter hereof and all prior agreements, representations,
statements and undertakings, oral or written, are hereby expressly superseded and
cancelled.
10.5 All notices in connection with this Agreement shall be in writing and shall be given
by registered or certified mail to the following address: Gordano Ltd, 1 Yeo Bank Business
Park, Kenn, Kenn Road, Clevedon, North Somerset, BS21 6UW, UK.

© 2015. Gordano Limited. All rights reserved.
320 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Licence Agreements

Copyright ©
LICENCE AGREEMENT MySQL AB

MySQL AB, Bangårdsgatan 8, 753 20 Uppsala, SWEDEN

1. License Grant. Customer is granted a limited, non-exclusive, non-transferable license
to run one copy of the object code version of the Licensed Software on one machine or
instrument solely as integrated with, and for running and extracting data from, a Licensee
Application. Use shall be limited to internal business purposes in accordance with these
license terms. If the Integrated Product is licensed for concurrent or network use, Cus-
tomer may not allow more than the maximum number of authorized users to access and
use the Licensed Software concurrently.

2. License Restrictions. Customer may make copies of the Licensed Software only for
backup and archival purposes. Customer shall not:

(a) copy the Licensed Software onto any public or distributed networks

(b) use the Licensed Software as a general SQL server, as a stand alone application or with
applications other than Licensee Applications under this license;

(c) change any proprietary rights notices which appear in the Licensed Software; or

(d) modify the Licensed Software.

3. Ownership. MySQL AB and its third party suppliers retain all right, title and interest in
the Licensed Software and all copies thereof, including all copyright and other intellectual
property rights. MySQL AB may protect its rights in the Licensed Software in the event of
any violation of this EULA.

4. Transfer. Customer may transfer the license granted herein provided that it complies
with any transfer terms imposed by Licensee and delivers all copies of the Licensed Soft-
ware to the transferee along with this EULA. The transferee must accept the terms and
conditions of this EULA as a condition to any transfer. Customer's license to use the
Licensed Software will terminate upon transfer. Customer must comply with all applicable
export laws and regulations.

5. Termination. Upon termination of this license, Customer must immediately destroy all
copies of the Licensed Software.
Gordano Ltd, 1995-2015 321

Licence Agreements MML Programmer’s Guide
The MD5 Message-Digest Algorithm

The MD5 Message-Digest Algorithm used in NTMail is copyright (c) 1992-2, RSA Data
Security, Inc. Created 1991. All rights reserved.

License to copy and use this softare is granted provided that it is identified as the "RSA
Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or refer-
encing this software or this function.

License is also granted to make and use derivative works provided that such works are
identified as "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm"
in all material mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either the merchantability of
this software or the suitability of this software for any particular purpose. It is provided
"as is" without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this documentation and/or
software.

jQuery MIT License

Copyright (c) 2008 John Resig, http://jquery.com/

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEAL-
INGS IN THE SOFTWARE.
322 Copyright © Gordano Ltd, 1995-2015

MML Programmer’s Guide Installation and Con-

Copyright ©
Installation and Contact Information
For installation you need the following information. Keep a note of
the values you used here in case you need to quote them to
support.

Your domain name

Your computer’s IP address (if
static).

Telephone number of ISP’s
computer.

Your account user name at
the ISP and its password.

To contact Gordano Ltd. :

Support
• Email: support@gordano.com

Sales
• Email: sales@gordano.com
• Tel: +44 1275 345100
• Fax: +44 1275 340056
• Unit 1, Yeo Bank Business Park, Kenn Road, Clevedon, North

Somerset, BS21 6UW.
Gordano Ltd, 1995-2015 323

Installation and Contact Information MML Programmer’s Guide
324 Copyright © Gordano Ltd, 1995-2015

Gordano Limited
Unit 1, Yeo Bank Business Park, Kenn Road, Clevedon,

North Somerset, BS21 6UW. UK

http://www.gordano.com

Copyright © Gordano Ltd, 1995-2015

	1 Introduction
	1.1 Who Should Read this Guide?
	1.2 Other Gordano Guides
	1.3 Conventions

	2 Introducing Mail Meta Language
	2.1 Language Structure
	Mixing HTML and code
	Pages
	Comments
	Escape sequences

	2.2 Types of Script
	GUI scripts
	GMS Anti-Spam scripts
	Timed events
	List messages containing executable MML

	2.3 Program Limits
	2.4 Directories and Files
	2.5 The # Operator
	2.6 Expression Evaluation
	2.7 Notes on the Script Server
	2.8 Account Names
	2.9 Variables
	Variable manipulation
	Variable search order
	Variable types
	Object variables
	Persistent variable storage

	2.10 Processing Image Maps
	2.11 Session Setup
	2.12 Tips for C and VisualBasic Programmers

	3 Commands
	3.1 Def
	3.2 Do
	3.3 End
	3.4 For
	3.5 If..Else
	3.6 Include
	3.7 Return
	3.8 Session (also called Global)
	3.9 While
	3.10 Connect
	3.11 Destroy

	4 Function Groups
	4.1 Messages
	4.2 User Functions
	4.3 Membership Database Functions
	4.4 File and Directory Functions
	4.5 Folder (Mailbox) Functions
	4.6 Connection Functions
	4.7 String Functions
	4.8 List String Functions
	4.9 Bit and Bit Mask Functions
	4.10 Times, Date and Event Functions

	5 Functions
	Introduction
	Return values
	Files and absolute paths
	Directories
	AddAlias
	AddDomain
	AddHTTPResponseHeader
	AddPostfix
	AddrInRange
	AddSession
	AddTimed
	AddUser
	AddZip
	AllowAbsolutefileNames
	ArchiveAddMessage
	ArchiveRecalculate
	ArchiveRefresh
	Asc
	AutoConnect
	AutoDisconnect
	BitAnd
	BitIsSet
	BitMaskIsSet
	BitReset
	BitSet
	Bound
	CheckPassword
	CheckServer
	CheckServiceAccess
	CheckTopLevelScript
	Chr
	CloseMemberDB
	CloseZip
	CollectFromPOP
	ConfiguredLanguages
	ConvertCase
	ConvertForDisplay
	ConvertToAccount
	ConvertToDomain
	ConvertToEmailAddress
	ConvertToFlatHTML
	ConvertToHTML
	ConvertToJava
	ConvertToRealName
	ConvertToUser
	ConvertToTime
	CreateDirectory
	CreateSetup
	Date
	DateTimeFormat
	DefaultLanguage
	DefaultListParm
	DelAlias
	DelDir
	DelDomain
	DelDomainFiles
	DeleteMemberRecord
	DelFile
	DelSession
	DelTimed
	DelUser
	DelUserFiles
	DiffDate
	DirSize
	EncryptPassword
	EnumRasEntries
	ExistDomain
	ExistFile
	ExistUser
	ExistVar
	FileClose
	FileCopy
	FileEOF
	FileIsBinary
	Filemd5
	FileOpen
	FileReadLine
	FileReplace
	FileSize
	FileVscan
	FileWriteLine
	FilterDomainsOfType
	FilterMsg
	FilterUsersOfType
	FindFiles
	FolderAppendMsg
	FolderClose
	FolderDelete
	FolderExist
	FolderFlush
	FolderGetMessageCount
	FolderGetNewMessageCount
	FolderList
	FolderModified
	FolderMsgCheckStatus
	FolderMsgSetStatus
	FolderMsgUnsetStatus
	FolderOpen
	FolderRename
	GetAllMembers
	GetConnectionDomain
	GetConnectionVariables
	GetHostedIps
	GetHostname
	GetHTTPCookie
	GetHTTPPage
	GetIPAddress
	GetLoadsharingServer
	GetLoadsharingServerList
	GetLocalDomain
	GetLocalIps
	GetLocalAddr
	GetLogonUser
	GetMailboxName
	GetMaxThreads
	GetMemberRecord
	GetMXRecord
	GetOs
	GetOsStr
	GetPostFixes
	GetProcessorStr
	GetProtocolText
	GetProtocolType
	GetProxyCacheSize
	GetRand
	GetRealLogonUser
	GetRemoteConnectionAddr
	GetSessionID
	GetSessionVariables
	GetStatus
	GetSupportInfo
	GetUID
	GetUsersOfType
	IMIsAvailable
	ImportFolder
	ImportMembers
	IMSendMessage
	IncrementDate
	InStr
	Interpret
	IsAbsoluteFilename
	IsConnected
	IsDate
	IsDialupEnabled
	IsDomain
	IsInteger
	IsIPAddress
	IsLoggedOn
	IsMemberOfList
	IsValidDate
	IsValidEmailAddress
	IsValidPassword
	IsValidStr
	IsValidUserName
	IsWildcard
	KillScript
	LanguageName
	Left
	Len
	ListRunningScripts
	ListVersion
	Location
	Log
	LoggedOnUsers
	LSAppend
	LSAppend2
	LSDelete
	LSDeleteElement
	LSElement
	LSFind
	LSFirstMatch
	LSLength
	LSMatch
	LSOrder
	LSPopElement
	LSPushElement
	LSReplace
	LSSubset
	Match
	Md5Str
	MemberFormat
	Mid
	MsgAddAttachment
	MsgAddBody
	MsgAddFile
	MsgAddHeader
	MsgAddRecipient
	MsgClose
	MsgCompose
	MsgCopy
	MsgCreate
	MsgEndOfLines
	MsgReadFirstLine
	MsgReadNextLine
	MsgRemoveHeader
	MsgSetEncoding
	MsgSize
	Nls
	ODBCInstalled
	OpenMemberDB
	OpenZip
	Print
	ProxyAgeCache
	PurgeDNSCache
	ReadNextMemberRecord
	RegGetVal
	RegSetVal
	RemovePostFix
	Resolve
	Right
	RunExecutable
	SearchFile
	SendNotification
	ServerDSNExists
	ServerValidUser
	ServiceStart
	ServiceStatus
	ServiceStop
	SetHTTPCacheable
	SetHTTPCookie
	SetHTTPResponseStatus
	SetLogType
	SetMemberRecord
	SetPassword
	SetScriptPriority
	SetSessionLanguage
	Sleep
	SQLCreateDb
	SQLExec
	Time
	TlsEnabled
	ToInt
	Trim
	UrlDecode
	UrlEncode
	VerifyUser
	WeakDecryptValue
	WeakEncryptValue
	WildcardFilterMsg
	WildCardMatch
	WordWrap

	6 Constants
	7 Troubleshooting
	7.1 Diagnostics
	7.2 List of Script Errors

	8 FAQs and Examples
	8.1 Example Robots
	8.2 Example Timed Events
	8.3 Example User Defined GUI
	8.4 What is an API?
	8.5 What is MML?
	8.6 What is a script?
	8.7 Examples

	Licence Agreements
	Installation and Contact Information

